• 제목/요약/키워드: Elemental Mercury

검색결과 55건 처리시간 0.021초

Human Exposure and Health Effects of Inorganic and Elemental Mercury

  • Park, Jung-Duck;Zheng, Wei
    • Journal of Preventive Medicine and Public Health
    • /
    • 제45권6호
    • /
    • pp.344-352
    • /
    • 2012
  • Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

Effective Decontamination and Remediation After Elemental Mercury Exposure: A Case Report in the United States

  • Johnson-Arbor, Kelly;Schultz, Brian
    • Journal of Preventive Medicine and Public Health
    • /
    • 제54권5호
    • /
    • pp.376-379
    • /
    • 2021
  • Elemental mercury exposure can result in significant toxicity. Source decontamination and remediation are often required after larger elemental mercury exposures, but the details of these processes are infrequently reported. In the case described herein, a 64-year-old woman and her husband were exposed to elemental mercury in their home after the husband purchased it online for the purpose of recreational barometer calibration. After the mercury reportedly spilled during the calibration process, a vacuum cleaner was used to decontaminate the affected surface; this led to extensive mercury contamination of the home. The couple was relocated from the home while remediation occurred over the course of several weeks. Vacuum cleaning of an elemental mercury spill can lead to extensive volatilization and recirculation of mercury vapor. For smaller mercury spills, careful removal of visible mercury beads by using an eyedropper, cardboard, and masking tape is recommended. Larger spills require professional decontamination and remediation and may necessitate involvement of governmental resources. Vacuum cleaning should not be used as an initial method of decontamination after elemental mercury exposure. Careful attention to source decontamination can reduce the emotional and financial costs associated with extensive remediation after elemental mercury exposure.

상용 SCR 촉매상에서 화력발전소 배기가스 중 원소수은의 산화반응연구 (Investigation of Elemental Mercury Oxidation on Commercial SCR Catalysts in Flue Gas of Fossil Fired Power Plant)

  • 이승민;이정빈
    • 한국대기환경학회지
    • /
    • 제26권3호
    • /
    • pp.245-252
    • /
    • 2010
  • For the purpose of evaluating to remove elemental mercury using SCR (Selective Catalytic Reduction) catalysts, the result of the concentration variation of elemental mercury in lab experiment and field measurement was compared. The effect of the elemental mercury oxidation on commercial catalysts was studied in simulated gas. Three species of SCR catalyst, $V_2O_5-TiO_2$ type, were selected. The elemental mercury reduced 30% without HCl gas in SCR operating condition. But the width of reduction increased 60% at 20 ppm HCl gas. According to the result of field measurement, reduction rate of elemental mercury at SCR outlet showed 60%. The total mercury concentration decreased about 20%. The results were similar to the lab test. The results of chemical analysis of test sample showed increase of mercury concentration but surface change was not observed.

유전체 장벽 방전을 이용한 원소수은의 산화특성 (Oxidation of Elemental Mercury using Dielectric Barrier Discharge Process)

  • 변영철;고경보;조무현;남궁원;신동남;고동준;김경태
    • Korean Chemical Engineering Research
    • /
    • 제45권2호
    • /
    • pp.183-189
    • /
    • 2007
  • 대표적인 수은 발생원인 도시폐기물 소각로와 화력 발전소 등지에서 배출되는 원소수은($Hg^0$)은 산화수은($Hg^{2+}$) 및 입자상 수은($Hg^p$)과 달리 기존의 대기오염 방지시설로 제거하기 난해한 편이다. 그로 인해 원소수은의 효율적 제거에 대한 많은 연구가 진행중이며, 이 연구에서는 저온 플라즈마(non-thermal plasma)의 하나인 유전체 장벽 방전(dielectric barrier discharge: DBD) 공정을 이용하여 원소수은 산화에 관한 실험을 수행하였다. 실험 결과, 공기 상의 DBD 공정에서는 생성되는 산소 원자와 오존에 의해서 원소수은이 산화수은으로 전환됨을 알 수 있었으며, 원소수은의 산화율을 결정하는 주된 변수는 반응기에 주입되는 에너지 밀도임을 확인할 수 있었다.

A study on elemental mercury adsorption behaviors of nanoporous carbons with carbon dioxide activation

  • Bae, Kyong-Min;Park, Soo-Jin
    • Carbon letters
    • /
    • 제15권4호
    • /
    • pp.295-298
    • /
    • 2014
  • In this work, nanoporous carbons (NPCs) were prepared by the self-assembly of polymeric carbon precursors and block copolymer template in the presence of tetraethyl orthosilicate and colloidal silica. The NPCs' pore structures and total pore volumes were analyzed by reference to $N_2$/77 K adsorption isotherms. The porosity and elemental mercury adsorption of NPCs were increased by activation with carbon dioxide. It could be resulted that elemental mercury adsorption ability of NPCs depended on their specific surface area and micropore fraction.

Role of Electron Acceptor-donor on Elemental Mercury Removal Using Nano-silver-plated Activated Carbons Complexes

  • Lee, Hyo In;Yim, Yoon-Ji;Bae, Kyong-Min;Park, Soo-Jin
    • Composites Research
    • /
    • 제31권2호
    • /
    • pp.76-81
    • /
    • 2018
  • In this study, the elemental mercury removal behaviors of silver-plated porous carbons materials were investigated. The pore structures and total pore volumes of the hybrid materials were analyzed by $N_2$ adsorption/desorption analysis at 77 K. The pore structures and surface morphologies of the hybrid materials were characterized by XRD and SEM, respectively. The elemental mercury adsorption capacities of all silver-plated porous carbons hybrid materials were higher than those of the as-received samples, despite the fact that the specific surface areas and total pore volumes decreased with increasing metal loading time. It was found that silver nanoparticles showed excellent elemental mercury removal behaviors in carbonaceous hybrid materials.

Elemental Mercury Adsorption Behaviors of Chemically Modified Activated Carbons

  • Kim, Byung-Joo;Bae, Kyong-Min;An, Kay-Hyeok;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1321-1326
    • /
    • 2011
  • In this work, the effects of different surface functional groups on the elemental mercury adsorption of porous carbons modified by chemical treatments were investigated. The surface properties of the treated carbons were observed by Boehm's titration and X-ray photoelectron spectroscopy (XPS). It was found that the textural properties, including specific surface area and pore structures, slightly decreased after the treatments, while the oxygen content of the ACs was predominantly enhanced. Elemental mercury adsorption behaviors of the acidtreated ACs were found to be four or three times better than those of non-treated ACs or base-treated ACs, respectively. This result indicates that the different compositions of surface functional groups can lead to the high elemental mercury adsorption capacity of the ACs. In case of the acid-treated ACs, the $R_{C=O}/R_{C-O}$ and $R_{COOH}/R_{C-O}$ showed higher values than those of other samples, indicating that there is a considerable relationship between mercury adsorption and surface functional groups on the ACs.

비산재 성분과 원소 및 산화수은의 반응특성 (Reaction Characteristics of Elemental and Oxidized Mercury with Fly Ash Components)

  • 이상섭;김광렬;오광중;전준민;강동창
    • 청정기술
    • /
    • 제19권4호
    • /
    • pp.453-458
    • /
    • 2013
  • 배기가스 중에서 비산재는 수은을 산화하거나 흡착하는 능력을 지닌다. 비산재의 수은 산화 및 흡착 효율은 비산재가 가지는 특성에 따라 변하여 일정하지 않다. 본 연구는 비산재 성분과 수은의 반응특성을 이해하기 위하여 비산재 성분물질이 원소수은과 산화수은에 대해 가지는 산화 및 흡착 능력을 평가하였다. 그리고 비산재 시료의 조성에 맞게 합성한 비산재를 시험하였고, 석탄화력발전소에서 수령한 비산재 시료의 결과와 비교하였다. 원소수은에 대해서는 미세탄소분말, 산화구리, 산화철이 높은 산화 또는 흡착효율을 보였고, 염화수은에 대해서는 미세탄소분말, 산화칼슘, 산화구리, 산화마그네슘이 높은 효율을 보였다. 그리고 합성비산재는 비산재 시료와 유사한 수은 산화 및 흡착 효율을 보였다.

$V_2O_5-WO_3/TiO_2$ 계 SCR 촉매의 가스상 원소수은 산화 활성 (Activity of $V_2O_5-WO_3/TiO_2$-based SCR Catalyst for the Oxidation of Gas-phase Elemental Mercury)

  • 홍현조;함성원
    • 청정기술
    • /
    • 제17권4호
    • /
    • pp.370-378
    • /
    • 2011
  • 가스상 원소수은의 산화수은으로의 산화에 대한 $V_2O_5-WO_3/TiO_2$ 계 SCR 촉매의 활성이 조사되었다. 상용 SCR 촉매의 경우 원소수은 산화반응에 산화제로 작용하는 HCl의 존재 및 반응조건에 상관없이 반응 후의 모든 촉매에서 수은성분이 검출되지 않았다. 이는 $V_2O_5-WO_3/TiO_2$ 계 SCR 촉매에서 HCl에 의한 원소수은의 산화는 수은이 촉매표면에 거의 흡착되지 않는 Eley-Rideal mechanism에 의해 진행되는 것을 나타내는 결과이다. $V_2O_5$ 함량에 따라 수은 산화활성이 크게 증가되는 것으로부터 $V_2O_5$가 수은산화 반응에 주된 활성점 임을 확인할 수 있었다. 그러나 $V_2O_5$ 함량에 따라 TOF는 감소하는데 이는 촉매 표면에 존재하는 $V_2O_5$의 구조에 따라 수은산화 활성에 차이가 있다는 것을 의미한다. 동일한 반응온도와 HCl 농도에서 산화 조건에 비해 SCR 조건에서 원소수은의 산화활성은 크게 낮은 것으로 나타났다.

융합형여과집진장치에서의 먼지입자와 원소수은의 제거 성능 특성 (Simultaneous Removal Characteristics of Particulate and Elemental Mercury in Convergence Particulate Collector)

  • 박영옥;정주영
    • 한국입자에어로졸학회지
    • /
    • 제6권4호
    • /
    • pp.173-183
    • /
    • 2010
  • The high temperature pleated filter bags which were used during this study were made of pleated nonwoven fabric of heat and acid resistant polysulfonate fibers which can withstand the heat up to $300^{\circ}C$ and have a filtration area which is 3 to 5 times larger than the conventional round filter bags. Cartridge module packed with 3 kind of the sulfur impregnated activated-carbon based sorbents were inserted in the inner of the pleated filter bag. This type of pleated filter bag was designed to remove not only the particulate matter but also the gaseous elemental mercury. The electrostatic precipitator part can enhance the particulate removal efficiency and reduce the pressure drop of the pleated filter bag by agglomerated particles to form a more porous dust layer on the surface of the pleated bag which is increased the filter bag cleaning efficiency. In addition, the most of particles are separated from the flue gas stream through the cyclone and the electrostatic precipitator part which were installed at the lower part and main body part of the convergence particulate collector, respectively. Thus reduce particulate loading of the high temperature pleated filter bags were applied in this study to analyze the removal characteristics of particulate matter and gaseous elemental mercury.