DOI QR코드

DOI QR Code

Elemental Mercury Adsorption Behaviors of Chemically Modified Activated Carbons

  • Kim, Byung-Joo (Smart Composite Material Research Team, Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites) ;
  • Bae, Kyong-Min (Department of Chemistry, Inha University) ;
  • An, Kay-Hyeok (Smart Composite Material Research Team, Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2010.11.17
  • Accepted : 2011.02.28
  • Published : 2011.04.20

Abstract

In this work, the effects of different surface functional groups on the elemental mercury adsorption of porous carbons modified by chemical treatments were investigated. The surface properties of the treated carbons were observed by Boehm's titration and X-ray photoelectron spectroscopy (XPS). It was found that the textural properties, including specific surface area and pore structures, slightly decreased after the treatments, while the oxygen content of the ACs was predominantly enhanced. Elemental mercury adsorption behaviors of the acidtreated ACs were found to be four or three times better than those of non-treated ACs or base-treated ACs, respectively. This result indicates that the different compositions of surface functional groups can lead to the high elemental mercury adsorption capacity of the ACs. In case of the acid-treated ACs, the $R_{C=O}/R_{C-O}$ and $R_{COOH}/R_{C-O}$ showed higher values than those of other samples, indicating that there is a considerable relationship between mercury adsorption and surface functional groups on the ACs.

Keywords

References

  1. Darbha, G. K.; Singh, A. K.; Rai, U. S.; Yu, E.; Yu, H.; Yu, H.; Ray, P. C. J. Am. Chem. Soc. 2008, 130, 8038. https://doi.org/10.1021/ja801412b
  2. Issaro, N.; Abi-Ghanem, C.; Bermond, A. Anal. Chim. Acta 2009, 631, 1. https://doi.org/10.1016/j.aca.2008.10.020
  3. Pavlish, J. H.; Hamre, L. L.; Zhuang, Y. Fuel 2010, 89, 838. https://doi.org/10.1016/j.fuel.2009.05.021
  4. Ji, H.; Kim, J.; Yoo, J. W.; Lee, H. S.; Park, K. M.; Kang, Y. Bull. Korean Chem. Soc. 2010, 31, 1371. https://doi.org/10.5012/bkcs.2010.31.5.1371
  5. ShamsiJazeyi, H.; Kaghazchi, T. J. Ind. Eng. Chem. 2010, 16, 852. https://doi.org/10.1016/j.jiec.2010.03.012
  6. Galbreath, K. C.; Zygarlicke, C. J. Fuel Process. Techno. 2000, 65, 289. https://doi.org/10.1016/S0378-3820(99)00102-2
  7. Xin, G.; Zhao, P.; Zheng, C. Proc. Combustion Inst. 2009, 32, 2693. https://doi.org/10.1016/j.proci.2008.06.090
  8. Jeon, S. H.; Eom, Y.; Lee, T. G. Chemosphere 2008, 71, 969. https://doi.org/10.1016/j.chemosphere.2007.11.050
  9. Kwon, S. K.; Kim, H. N.; Rho, J. H.; Swamy, K. M. K.; Shanthakumar, S. M.; Yoon, J. Bull. Korean Chem. Soc. 2009, 30, 719. https://doi.org/10.5012/bkcs.2009.30.3.719
  10. Skodras, G.; Diamantopoulou, I.; Pantoleontos, G.; Sakellaropoulos, G. P. J. Hazard. Mater. 2008, 158, 1. https://doi.org/10.1016/j.jhazmat.2008.01.073
  11. Ghodbane, I.; Hamdaoui, O. J. Hazard. Mater. 2008, 160, 301. https://doi.org/10.1016/j.jhazmat.2008.02.116
  12. Portzer, J. W.; Albritton, J. R.; Allen, C. C.; Gupta, R. P. Fuel Process Technol. 2004, 85, 621. https://doi.org/10.1016/j.fuproc.2003.11.023
  13. Pitoniak, E.; Wu, C. Y.; Mazyck, D. W.; Powers, K. W.; Sigmund, W. Environ. Sci. Technol. 2005, 39, 1269. https://doi.org/10.1021/es049202b
  14. Vidic, R. D.; Siler, D. P. Carbon 2001, 39, 5763.
  15. Manoochehri, M.; Rattan, V. K.; Khorsand, A.; Panahi, A. Carbon Lett. 2010, 11, 169. https://doi.org/10.5714/CL.2010.11.3.169
  16. Karatza, D.; Lancai, A.; Musmarra, D.; Zucchini, C. Exp. Therm. Fluid Sci. 2000, 21, 150. https://doi.org/10.1016/S0894-1777(99)00065-5
  17. Ghorishi, S. B.; Robert, M. K.; Shannon, D. S.; Brian, K. G.; Wojciech, S. J. Environ. Sci. Technol. 2002, 36, 4454. https://doi.org/10.1021/es0255608
  18. Fathy, N. A.; El-Sherif, Y. Carbon Lett. 2011, 12, 1. https://doi.org/10.5714/CL.2011.12.1.001
  19. Bansal, R. C.; Donnet, J. B.; Stoeckli, F. Active Carbon; Marcel Decker: New York, 1988.
  20. Suffet, Y. H.; McGuire, M. J. Activated Carbon Adsorption; Ann Arbor Science: Michigan, 1981.
  21. Choi, W. K.; Kim, B. J.; Chi, S. H.; Park, S. J. Carbon Lett. 2009, 10, 239. https://doi.org/10.5714/CL.2009.10.3.239
  22. Park, S. J.; Kim, B. J. J. Colloid Interface Sci. 2005, 291, 597. https://doi.org/10.1016/j.jcis.2005.05.012
  23. Calvert, S., Englund, H. M. Handbook of Air Pollution Technology; John Wiley & Sons: New York, 1984.
  24. Kim, B. J.; Park, S. J. J. Colloid Interface Sci. 2010, 342, 575. https://doi.org/10.1016/j.jcis.2009.10.045
  25. Cho, K. S.; Kim, B. J.; Kim, S.; Kim, S. H.; Park, S. J. Bull. Korean Chem. Soc. 2010, 31, 100. https://doi.org/10.5012/bkcs.2010.31.01.100
  26. Lee, S. J.; Seo, Y. C.; Jurng, J.; Lee, T. G. Atmos. Environ. 2004, 38, 4887. https://doi.org/10.1016/j.atmosenv.2004.05.043
  27. Li, Y. H.; Lee, C. W.; Gullett, B. K. Fuel 2003, 82, 451. https://doi.org/10.1016/S0016-2361(02)00307-1
  28. Skodras, G.; Diamantopoulou, I.; Sakellaropoulos, G. P. Desalination 2007, 210, 281. https://doi.org/10.1016/j.desal.2005.12.082
  29. Zhu, J.; Deng, B.; Yang, J.; Gang, D. Carbon 2009, 47, 2014. https://doi.org/10.1016/j.carbon.2009.03.047
  30. Hu, C.; Zhou, J.; Luo Z.; He, S.; Wang, G.; Cen, K. J. Environ. Sci. 2006, 18, 1161. https://doi.org/10.1016/S1001-0742(06)60056-9
  31. Boehm, H. P. Adv. Catal. 1966, 16, 179. https://doi.org/10.1016/S0360-0564(08)60354-5
  32. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. https://doi.org/10.1021/ja01269a023
  33. Lippens, B. C.; de Boer, J. H. J. Catal. 1965, 4, 319. https://doi.org/10.1016/0021-9517(65)90307-6
  34. Park, S. J. Interfacial Forces and Fields: Theory and Applications; Marcel Dekker: New York, 1999.
  35. Kim, B. J.; Lee, Y. S.; Park, S. J. Int. J. Hydrogen Energy 2008, 33, 4112. https://doi.org/10.1016/j.ijhydene.2008.05.077
  36. Kim, B. J.; Park, S. J. Int. J. Hydrogen Energy in press.

Cited by

  1. A review of elemental mercury removal processing vol.12, pp.3, 2011, https://doi.org/10.5714/CL.2011.12.3.121
  2. Facile fabrication of Poly(vinyl alcohol)/Silica composites for removal of Hg(II) from water vol.23, pp.1, 2015, https://doi.org/10.1007/s13233-015-3010-8
  3. Removal of Mercury(II) from Aqueous Solutions by Adsorption on Poly(1-amino-5-chloroanthraquinone) Nanofibrils: Equilibrium, Kinetics, and Mechanism Studies vol.2016, pp.1687-4129, 2016, https://doi.org/10.1155/2016/7245829
  4. Removal of mercury by adsorption: a review vol.23, pp.6, 2016, https://doi.org/10.1007/s11356-015-5880-x
  5. Effect of Halide Impregnation on Elemental Mercury Removal of Activated Carbons vol.38, pp.2, 2017, https://doi.org/10.1002/bkcs.11062
  6. Facile Synthesis, Characterization of Poly-2-mercapto-1,3,4-thiadiazole Nanoparticles for Rapid Removal of Mercury and Silver Ions from Aqueous Solutions vol.10, pp.2, 2018, https://doi.org/10.3390/polym10020150
  7. Elemental mercury vapor adsorption of copper-coated porous carbonaceous materials vol.163, pp.None, 2011, https://doi.org/10.1016/j.micromeso.2012.05.038
  8. A Study on Toxic Acidic Vapor Removal Behaviors of Continuously Nanostructured Copper/Nickel-Coated Nanoporous Carbons vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/546720
  9. A Detailed Investigation of Adsorption Isotherms, Enthalpies, and Kinetics of Mercury Adsorption on Nonimpregnated Activated Carbon vol.58, pp.10, 2011, https://doi.org/10.1021/acs.iecr.8b05932
  10. Role of Activated Carbon Precursor in Mercury Removal vol.59, pp.40, 2020, https://doi.org/10.1021/acs.iecr.0c02843
  11. Role of Activated Carbon Precursor for Mercury Oxidation and Removal: Oxidized Surface and Carbene Site Interaction vol.9, pp.7, 2011, https://doi.org/10.3390/pr9071190
  12. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption vol.6, pp.None, 2011, https://doi.org/10.1016/j.clet.2021.100382