• Title/Summary/Keyword: Elemental Mercury

Search Result 55, Processing Time 0.026 seconds

Human Exposure and Health Effects of Inorganic and Elemental Mercury

  • Park, Jung-Duck;Zheng, Wei
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.6
    • /
    • pp.344-352
    • /
    • 2012
  • Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

Effective Decontamination and Remediation After Elemental Mercury Exposure: A Case Report in the United States

  • Johnson-Arbor, Kelly;Schultz, Brian
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.5
    • /
    • pp.376-379
    • /
    • 2021
  • Elemental mercury exposure can result in significant toxicity. Source decontamination and remediation are often required after larger elemental mercury exposures, but the details of these processes are infrequently reported. In the case described herein, a 64-year-old woman and her husband were exposed to elemental mercury in their home after the husband purchased it online for the purpose of recreational barometer calibration. After the mercury reportedly spilled during the calibration process, a vacuum cleaner was used to decontaminate the affected surface; this led to extensive mercury contamination of the home. The couple was relocated from the home while remediation occurred over the course of several weeks. Vacuum cleaning of an elemental mercury spill can lead to extensive volatilization and recirculation of mercury vapor. For smaller mercury spills, careful removal of visible mercury beads by using an eyedropper, cardboard, and masking tape is recommended. Larger spills require professional decontamination and remediation and may necessitate involvement of governmental resources. Vacuum cleaning should not be used as an initial method of decontamination after elemental mercury exposure. Careful attention to source decontamination can reduce the emotional and financial costs associated with extensive remediation after elemental mercury exposure.

Investigation of Elemental Mercury Oxidation on Commercial SCR Catalysts in Flue Gas of Fossil Fired Power Plant (상용 SCR 촉매상에서 화력발전소 배기가스 중 원소수은의 산화반응연구)

  • Lee, Seung-Min;Lee, Jung-Bin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • For the purpose of evaluating to remove elemental mercury using SCR (Selective Catalytic Reduction) catalysts, the result of the concentration variation of elemental mercury in lab experiment and field measurement was compared. The effect of the elemental mercury oxidation on commercial catalysts was studied in simulated gas. Three species of SCR catalyst, $V_2O_5-TiO_2$ type, were selected. The elemental mercury reduced 30% without HCl gas in SCR operating condition. But the width of reduction increased 60% at 20 ppm HCl gas. According to the result of field measurement, reduction rate of elemental mercury at SCR outlet showed 60%. The total mercury concentration decreased about 20%. The results were similar to the lab test. The results of chemical analysis of test sample showed increase of mercury concentration but surface change was not observed.

Oxidation of Elemental Mercury using Dielectric Barrier Discharge Process (유전체 장벽 방전을 이용한 원소수은의 산화특성)

  • Byun, Youngchul;Ko, Kyung Bo;Cho, Moo Hyun;NamKung, Won;Shin, Dong Nam;Koh, Dong Jun;Kim, Kyoung Tae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.183-189
    • /
    • 2007
  • We have investigated the oxidation of gas phase elemental mercury using dielectric barrier discharge (DBD). In the DBD process, active species such as $O_3$, OH, O and $HO_2$ are generated by collisions between electrons and gas molecules. Search active species convert elemental mercury into mercury oxide which is deposited into the wall of DBD reactor because of its low vapor pressure. The oxidation efficiency of elemental mercury has been decreased from 60 to 30% by increasing the initial concentration of the elemental mercury from 72 to $655{\mu}g/Nm^3$. The gas retention time at the DBD reactor has showed the little effect on the oxidation efficiency. The more oxygen concentration has induced the more oxidation of elemental mercury, whereas there has been no appreciable oxidation within pure $N_2$ discharge. It has indicated that oxygen atom and ozone, generated in air condition determine the oxidation of elemental mercury.

A study on elemental mercury adsorption behaviors of nanoporous carbons with carbon dioxide activation

  • Bae, Kyong-Min;Park, Soo-Jin
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.295-298
    • /
    • 2014
  • In this work, nanoporous carbons (NPCs) were prepared by the self-assembly of polymeric carbon precursors and block copolymer template in the presence of tetraethyl orthosilicate and colloidal silica. The NPCs' pore structures and total pore volumes were analyzed by reference to $N_2$/77 K adsorption isotherms. The porosity and elemental mercury adsorption of NPCs were increased by activation with carbon dioxide. It could be resulted that elemental mercury adsorption ability of NPCs depended on their specific surface area and micropore fraction.

Role of Electron Acceptor-donor on Elemental Mercury Removal Using Nano-silver-plated Activated Carbons Complexes

  • Lee, Hyo In;Yim, Yoon-Ji;Bae, Kyong-Min;Park, Soo-Jin
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.76-81
    • /
    • 2018
  • In this study, the elemental mercury removal behaviors of silver-plated porous carbons materials were investigated. The pore structures and total pore volumes of the hybrid materials were analyzed by $N_2$ adsorption/desorption analysis at 77 K. The pore structures and surface morphologies of the hybrid materials were characterized by XRD and SEM, respectively. The elemental mercury adsorption capacities of all silver-plated porous carbons hybrid materials were higher than those of the as-received samples, despite the fact that the specific surface areas and total pore volumes decreased with increasing metal loading time. It was found that silver nanoparticles showed excellent elemental mercury removal behaviors in carbonaceous hybrid materials.

Elemental Mercury Adsorption Behaviors of Chemically Modified Activated Carbons

  • Kim, Byung-Joo;Bae, Kyong-Min;An, Kay-Hyeok;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1321-1326
    • /
    • 2011
  • In this work, the effects of different surface functional groups on the elemental mercury adsorption of porous carbons modified by chemical treatments were investigated. The surface properties of the treated carbons were observed by Boehm's titration and X-ray photoelectron spectroscopy (XPS). It was found that the textural properties, including specific surface area and pore structures, slightly decreased after the treatments, while the oxygen content of the ACs was predominantly enhanced. Elemental mercury adsorption behaviors of the acidtreated ACs were found to be four or three times better than those of non-treated ACs or base-treated ACs, respectively. This result indicates that the different compositions of surface functional groups can lead to the high elemental mercury adsorption capacity of the ACs. In case of the acid-treated ACs, the $R_{C=O}/R_{C-O}$ and $R_{COOH}/R_{C-O}$ showed higher values than those of other samples, indicating that there is a considerable relationship between mercury adsorption and surface functional groups on the ACs.

Reaction Characteristics of Elemental and Oxidized Mercury with Fly Ash Components (비산재 성분과 원소 및 산화수은의 반응특성)

  • Lee, Sang-Sup;Kim, Kwang-Yul;Oh, Kwang-Joong;Jeon, Jun-Min;Kang, Dong-Chang
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.453-458
    • /
    • 2013
  • Fly ash has capacity to oxidize or adsorb mercury in a flue gas. Mercury oxidation and adsorption efficiencies of fly ash vary depending on the properties of fly ash. This study was designed to understand reaction characteristics of mercury with fly ash components. The fly ash components were tested to determine their oxidation and adsorption capabilities for elemental mercury and oxidized mercury. A sample was synthesized with fly ash components and tested. The test results were compared with those of the fly ash sample obtained from a coal-fired power plant. $Fe_2O_3$, CuO and carbon black showed higher oxidation or adsorption efficiency for elemental mercury while CaO, MgO, CuO and carbon black showed higher adsorption efficiency for mercury chloride. In addition, the synthesized sample showed comparable mercury oxidation and adsorption efficiencies to the fly ash sample.

Activity of $V_2O_5-WO_3/TiO_2$-based SCR Catalyst for the Oxidation of Gas-phase Elemental Mercury ($V_2O_5-WO_3/TiO_2$ 계 SCR 촉매의 가스상 원소수은 산화 활성)

  • Hong, Hyun-Jo;Ham, Sung-Won
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.370-378
    • /
    • 2011
  • Catalytic activity of $V_2O_5-WO_3/TiO_2$-based SCR catalyst was examined for the oxidation of gas-phase elemental mercury to oxidized mercury. Mercury species was not detected on the commercial SCR catalyst after the oxidation reaction of elemental mercury, regadless of the presence of HCl acting as oxidant and the reaction conditions. This suggests that elemental mercury oxidation by HCl could occur via a Eley-Rideal mechanism with gas phase or weakly-bound mercury on the surface of $V_2O_5-WO_3/TiO_2$ SCR catalyst. The activity for mercury oxidation was significantly increased with the increase of $V_2O_5$ loading, which indicates that $V_2O_5$ is the active site. However, turnover frequency for mercury oxidation was decreased with the increase of $V_2O_5$ loading, indicating the activity for mercury oxidation was strongly dependent on the surface structure of vanadia species. The activity for oxidation of elemental mercury under SCR condition was much less than that under oxidation condition at the same HCl concentration and reaction temperature.

Simultaneous Removal Characteristics of Particulate and Elemental Mercury in Convergence Particulate Collector (융합형여과집진장치에서의 먼지입자와 원소수은의 제거 성능 특성)

  • Park, Young Ok;Jeong, Ju Yeong
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.173-183
    • /
    • 2010
  • The high temperature pleated filter bags which were used during this study were made of pleated nonwoven fabric of heat and acid resistant polysulfonate fibers which can withstand the heat up to $300^{\circ}C$ and have a filtration area which is 3 to 5 times larger than the conventional round filter bags. Cartridge module packed with 3 kind of the sulfur impregnated activated-carbon based sorbents were inserted in the inner of the pleated filter bag. This type of pleated filter bag was designed to remove not only the particulate matter but also the gaseous elemental mercury. The electrostatic precipitator part can enhance the particulate removal efficiency and reduce the pressure drop of the pleated filter bag by agglomerated particles to form a more porous dust layer on the surface of the pleated bag which is increased the filter bag cleaning efficiency. In addition, the most of particles are separated from the flue gas stream through the cyclone and the electrostatic precipitator part which were installed at the lower part and main body part of the convergence particulate collector, respectively. Thus reduce particulate loading of the high temperature pleated filter bags were applied in this study to analyze the removal characteristics of particulate matter and gaseous elemental mercury.