• Title/Summary/Keyword: Elemental Distribution

Search Result 173, Processing Time 0.026 seconds

HISTOLOGIC COMPARATIVE STUDY ON THE BONE-IMPLANT INTERFACE OF HYDROXYLAPATITE AND TITANIUM PLASMA SPRAY COATED IMPLANTS (Hydroxylapatite 및 Titanium Plasma Spray 피복임프란트와 골조직 계면의 조직학적 비교 연구)

  • Cho, Ju-Oh;Song, Kwang-Yeob;Park, Charm-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.3
    • /
    • pp.492-516
    • /
    • 1995
  • This study evaluated the responses of mandibular bones of mongrel dogs to loaded hydro xylapatite(HA) and titanium plasma spray(TPS) coated endosseous dental implants, using unloaded ones as the control group. after HA and TPS coated implants were implanted, their bone reactions with vital bones have been observed with light and scanning electron microscope(SEM) at the three periods of the 4th, 12th and 20th week. These reactions have been also compared in a histomorphometric method. The elemental distribution state of implants and the interface neighboring bone tissues have been measured with the energy dispersive analysis of X-rays(EDAX). The following results were obtained ; 1. The light microscopic analysis showed osseointegration in both the control group and the occlusal force loaded group ; Its degree was shown to be higher in the long-maintained and occlusal force groups. 2. The SEM analysis showed that both groups had osseointegration, In the case of TPS-coated implants, the coated layer was divided on the bone interface. In the case of HA-coated implants, there appeared a division between the metal and coated interface. 3. In the histomorphometric analysis, the measured ratio contaction bone of TPS-coated implants was $70{\pm}19$% in the case of no occlusal force ; it was $84{\pm}13$% in the case of occlusal force. The measured ratio contacting bone of HA-coated implants was $75{\pm}18$% in the case of no occlusal force ; it was $94{\pm}9$% in the case of occlusal force. However, there was no significant difference statistically(p>0.05). 4. Both groups showed that the ratio of calcium and phosphorous increased more in the bone tissues than on the bone to implant interface.

  • PDF

Review: Magnetite Synthesis using NanoFermentation (Review: NanoFermentation을 이용한 자철석 합성연구)

  • Moon, Ji-Won;Roh, Yul;Phelps, Tommy J.
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • Biomineralization has been explored for geochemical cycles and microbial tolerance mechanisms to metal toxicity. Here, we are introducing NanoFermentation which enables economic, environmentally friendly, requiring low input energy, and scalable manufacturing of nano-dimensioned magnetite. We are also focusing on controlling factors of crystallite size which can determine superparamagnetism and ferrimagnetism. Controlling factors are such as microbial species, temperature, incubation time, medium composition, substituted elements and their concentration, precursor type, reaction volume, precursor concentration density and their combinations. Crystallite size distribution of biomagnetite depends on the balance between nuclei generation and crystal growth. Biomineralization will elucidate elemental cycles on earth crust and microbial ecology as well as it will be applied to material sciences and devices via massive production of nanomaterials.

Otolith microchemistry reveals the migration patterns of the flathead grey mullet Mugil cephalus (Pisces: Mugilidae) in Korean waters

  • Bae, Seung Eun;Kim, Jin-Koo
    • Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.185-195
    • /
    • 2020
  • Background: The flathead grey mullet Mugil cephalus has the widest distribution among mugilid species. Recent studies based on mitochondrial DNA sequences showed that the species comprises at least 14 different groups, three of which occur in the northwest Pacific. We analyzed the otolith microchemistry of M. cephalus at several locations in Korea to improve understanding of migration pattern and population origin. Results: We collected 123 sagittal otoliths from seven locations and determined their concentrations of eight elements (7Li, 24Mg, 55Mn, 57Fe, 60Ni, 63Cu, 88Sr, and 138Ba) using laser ablation inductively coupled plasma mass spectrometry. Mean otolith elemental ratios differed significantly among the locations. The Sr:Ca, Fe:Ca, and Ba:Ca ratios were significantly higher than others, and useful chemical signatures for investigating the habitat use of M. cephalus populations. We identified five diverse and complicated migration patterns using the otolith data that we collected: estuarine resident (type I), freshwater migrant (type II), estuarine migrant (type III), seawater resident (type IV), and seawater migrant (type V). A canonical discriminant analysis plot revealed separation of two groups (type II in the Yellow Sea vs. other types in remaining locations). Two locations on Jeju Island, despite their close proximity, had fish with quite different migration patterns, corroborating previous molecular studies that distinguished two groups of fishes. Conclusion: We successfully showed that the migration patterns of the Korean mullet varied by location. Only fish from the western sector of Jeju had a unique migration pattern, which is likely confined population in this area. Among the eight otolith elements measured, the Sr:Ca ratio was found to be the best indicator of migration pattern and population origin.

Distribution Characteristics and Background Air Classification of PM2.5 OC and EC in Summer Monsoon Season at the Anmyeondo Global Atmosphere Watch (GAW) Regional Station (안면도 기후변화감시소의 여름철 PM2.5 OC와 EC 분포 특성 및 배경대기 구분)

  • Ham, Jeeyoung;Lee, Meehye;Ryoo, Sang-Boom;Lee, Young-Gon
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.429-438
    • /
    • 2019
  • Organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured with Sunset Laboratory Model-5 Semi-Continuous OC/EC Field Analyzer by NIOSH/TOT method at Anmyeondo Global Atmosphere Watch (GAW) Regional Station (37°32'N, 127°19'E) in July and August, 2017. The mean values of OC and EC were 3.7 ㎍ m-3 and 0.7 ㎍ m-3, respectively. During the study period, the concentrations of reactive gases and aerosol compositions were evidently lower than those of other seasons. It is mostly due to meteorological setting of the northeast Asia, where the influence of continental outflow is at its minimum during this season under southwesterly wind. While the diurnal variation of OC and EC were not clear, the concentrations of O3, CO, NOx, EC, and OC were evidently enhanced under easterly wind at night from 20:00 to 8:00. However, the high concentration of EC was observed concurrently with CO and NOx under northerly wind during 20:00~24:00. It indicates the influence of thermal power plant and industrial facilities, which was recognized as a major emission source during KORUS-AQ campaign. The diurnal variations of pollutants clearly showed the influence of land-sea breeze, in which OC showed good correlation between EC and O3 in seabreeze. It is estimated to be the recirculation of pollutants in land-sea breeze cycle. This study suggests that in general, Anmyeondo station serves well as a background monitoring station. However, the variation in meteorological condition is so dynamic that it is primary factor to determine the concentrations of secondary species as well as primary pollutants at Anmyeondo station.

Studies on the Polyethylenimine-Polymethylenepolyphenylene Isocyanate Backbone Chelating Resin Synthesis for the Trace Heavy Metals Enrichment and Analysis(II) : Rubeanic Acid Loaded Carboxymethylated Polyamine-Polyurea Resin (미량 중금속의 농축 및 정량을 위한 폴리에틸렌이민-폴리메틸렌폴리페닐렌 이소시안에이트에 토대한 킬레이트 수지의 합성에 관한 연구(II) : 루빈산이 결합된 카르복시메틸화된 폴리아민-폴리우레아 수지)

  • Chung, Yong Soon;Lee, Kang Woo;Hwang, Jongyoun;Lim, Kwang Soo
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.435-442
    • /
    • 1993
  • Carboxymethylated polyamine-polyurea resin loaded with rubeanic acid (RCCPPI resin) was obtained by 1 step chemical reaction between chlorocarboxymethylated polyamine-polyurea(CCPPI) resin as matrix polymer and rebeanic acid. This resin was confirmed with infrared spectrometry, elemental analysis, and thermal analysis(DSC). The adsorption characteristics of the heavy metal's on the resin were studied by measuring distribution coefficient($K_d$) with changing pH of the solutions and frontal chromatography. The enrichment, recovery, and analysis of trace heavy metals, such as cadmium, cerium, copper, nikel, lead, and zinc, in the presence of high concentrations of sodium, calcium, and acetate salts was possible quantitatively by a column packed with the resin at each optimum pH. Preconcentration factors were more than 25. To elute the adsorbed heavy metals on the resin, 0.025M EDTA solution(pH 9.0) was used.

  • PDF

Separation of Chromium(III) and Chromium(VI) by Carboxymethylated Polyamine-Polyurea Resin Column (카르복시메틸화된 폴리아민-폴리우레아 수지관에 의한 3가와 6가 크롬의 분리)

  • Chung, Yong Soon;Lee, Kang Woo;Hwang, Jong Youn;Lee, Yong Moon
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.205-211
    • /
    • 1994
  • Acetic acid and succinic acid bonded polyamine-polyurea(CPPI and SAPPI) resins were synthesized from the reaction of polyethylenimine-polymethylenepolyphenylene isocyanate(PPI) resin as matrix polymer and chloroacetic acid and chlorosuccinic acid respectively. These resins were confirmed with infrared spectrometry and elemental analysis. The adsorption characteristics of the chromium(III) and dichromate(or chromate) ions on the resins were studied by measuring distribution coefficients($K_d$) with changing pH of the solution. It was thought that these ions were adsorbed by ion exchange mechanism. Chromium(III) and dichromate ion could be separated with stepwise elution method by changing pH of the eluent using SAPPI resin packed column($0.6cm(i.\;d.){\times}10cm(L.)$). Also, dichromate ion could be preconecntrated with CPPI resin column by a concentration factor of 50.

  • PDF

An Orchestrated Attempt to Determine the Chemical Properties of Asian Dust Particles by PIXE and XRF Techniques

  • Ma, Chang-Jin;Kim, Ki-Hyun;Choi, Sung-Boo;Kasahara, Mikio;Tohno, Susumu
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.189-197
    • /
    • 2010
  • An orchestrated attempt was made to analyze samples of bulk and individual particulate matters (PM) collected at the Gosan ground-based station on the west coast of Jeju, Korea. A two-stage filter pack sampler was operated to collect particles in both large (> $1.2\;{\mu}m$) and small size fractions (< $1.2\;{\mu}m$) between the Asian dust (hereafter called "AD") storm event and non-Asian dust period. Elemental components in bulk and individual particles were determined by PIXE and synchrotron XRF analysis systems, respectively. To assess the transport pathways of air parcels and to determine the spatial distribution of PM, the backward trajectories of the Meteorological Data Explorer (Center for Global Environmental Research, 2010) and the NOAA's HYSPLIT dispersion-trajectory models were applied. In line with general expectations, Si and other crustal elements in large size particles showed considerably higher mass loading on AD days in comparison with non-AD days. Computation of the crustal enrichment factors [(Z/Si)$_{particle}$/(Z/Si)$_{desert}$ sand] of elements in large size particles (> $1.2\;{\mu}m$) allowed us to estimate the source profile and chemical aging of AD particles as well as to classify the soil-origin elements. On the basis of a single particle analysis, individual AD particles are classified into three distinct groups (neutralized mineral particles, S-rich mineral particles, and imperfectly neutralized particles).

Contribution of Biomass Burning and Secondary Organic Carbon to Water Soluble Organic Carbon at a Suburban Site (교외지역 수용성유기탄소 내 식생연소 및 2차 유기탄소에 의한 기여량 연구)

  • Oh, Sea-Ho;Park, Eun-Ha;Yi, Seung-Muk;Shon, Zang-Ho;Park, Kihong;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.259-268
    • /
    • 2018
  • The $PM_{2.5}$ samples were collected for every 6th day during one year at a suburban site in the Namwonsi, Jeollanamdo, Republic of Korea. Samples were analyzed for elemental carbon (EC), organic carbon (OC), and water-soluble organic carbon (WSOC), and levoglucosan. Although the water-soluble fraction of fine particulate OC consistently showed over a year, levoglucosan fraction of WSOC varied considerably from month to month. In this study, non-biomass-burning WSOC ($WSOC_{NBB}$) and biomass-burning $WSOC_{BB}$ were calculated with measurements of organic source tracer, levoglucosan, to better understand the temporal distribution and sources of WSOC. Two methods of predicting the secondary organic carbon from the biomass-burning $WSOC_{BB}$ Method and the EC-tracer Method were compared. Poor correlations between SOC estimated between two methods suggested that the use of the EC tracer method to estimate SOC may be significantly flawed. Direct measurements of levoglucosan and WSOC can provide a reasonable estimate of secondary organic carbon concentrations.

Ionic and Elemental Compositions of PM2.5 at the 1,100 m-Highland of Mt. Hallasan in Jeju Island (한라산 1,100 m 지역의 대기 중 PM2.5에 함유된 이온 및 원소 성분의 조성특성)

  • Lee, Ki-Ho;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.865-875
    • /
    • 2016
  • In this study, mass concentrations and chemical compositions of $PM_{2.5}$, including water-soluble ions and elements were determined at the 1,100 m-highland of Mt. Hallasan in Jeju Island across four seasons from August 2013 to August 2014. The average mass concentration of $PM_{2.5}$ was $12.5{\pm}8.41{\mu}g/m^3$ with 45.8% of the contribution from eight water-soluble ionic species. Three ionic species ($SO{_4}^{2-}$, $NH{_4}^+$, and $NO{_3}^-$) comprised 96.2% of the total concentration of ions contained in $PM_{2.5}$ and were the dominant ions, accounting for 43.5% of the $PM_{2.5}$ mass at Mt. Hallasan. On the basis of the mass concentration level, seasonal variation, enrichment factor, and relationship among elements, we can presume that Mg, K, Ca, Mn, Fe, Co, Sr, Ba, Nd, and Dy originated mainly from crust or soil and that V, Cr, Ni, Cu, Zn, As, Cd, and Pb were significantly enriched in $PM_{2.5}$ owing to the effects of the anthropogenic emissions. These results and the local distribution of emission sources and topographic characteristics near this sampling site suggest that the compositions of $PM_{2.5}$ collected at the 1100 m-highland of Mt. Hallasan were largely influenced by inflow from outside of Jeju Island.

Fabrication of Two-Layered $Al-B_4C$ Composites by Conventional Hot Pressing Uuder Nitrogen Atmosphere and Their Characterization

  • Bedir Fevzi
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1002-1011
    • /
    • 2006
  • In this study, we describe the conventional hot pressing (CHP) of layered $Al-B_4C$ composites and their characterization. The matrix alloy Al-5 wt.%Cu was prepared from elemental powder mixtures. The metal and B4C powders were mixed to produce either $Al-Cu-10vol.%B_4C$ or $Al-Cu-30vol.%B_4C$ combinations. Then, these powder mixtures were stacked as layers in the hot pressing die to form a two-layered composite. Hot pressing was carried out under nitrogen atmosphere to produce $30\times40\times5mm$ specimens. Microstructural features and age hardening characteristics of composites were determined by specimens cut longitudinally. The flexural strength of both layered composites and their monolithic counterparts were investigated via three point bending tests. In the case of layered specimens of both $10vol.%B_4C$ and $30vol.%B_4C$ containing layers were loaded for three-point test. The results show that a homogeneous distribution of $B_4C$ particles in the matrix alloy which is free of pores, can be obtained by CHP method. The ageing behavior of the composites was found to be influenced by the reinforced materials, i.e. higher hardness values were reached in 8 hrs for the composites than that for the matrix alloy. Flexural strength test showed that two-layered composites exhibited improved damage tolerance depending on layer arrangement. Microstructural investigation of the fracture surfaces of the bending specimens was performed by means of scanning electron microscope (SEM). While layer with lower reinforcement content exhibited large plastic deformation under loading, the other with higher reinforcement content exhibited less plastic deformation.