DOI QR코드

DOI QR Code

Otolith microchemistry reveals the migration patterns of the flathead grey mullet Mugil cephalus (Pisces: Mugilidae) in Korean waters

  • Bae, Seung Eun (Department of Marine Biology, Pukyong National University) ;
  • Kim, Jin-Koo (Department of Marine Biology, Pukyong National University)
  • Received : 2020.04.27
  • Accepted : 2020.08.19
  • Published : 2020.09.30

Abstract

Background: The flathead grey mullet Mugil cephalus has the widest distribution among mugilid species. Recent studies based on mitochondrial DNA sequences showed that the species comprises at least 14 different groups, three of which occur in the northwest Pacific. We analyzed the otolith microchemistry of M. cephalus at several locations in Korea to improve understanding of migration pattern and population origin. Results: We collected 123 sagittal otoliths from seven locations and determined their concentrations of eight elements (7Li, 24Mg, 55Mn, 57Fe, 60Ni, 63Cu, 88Sr, and 138Ba) using laser ablation inductively coupled plasma mass spectrometry. Mean otolith elemental ratios differed significantly among the locations. The Sr:Ca, Fe:Ca, and Ba:Ca ratios were significantly higher than others, and useful chemical signatures for investigating the habitat use of M. cephalus populations. We identified five diverse and complicated migration patterns using the otolith data that we collected: estuarine resident (type I), freshwater migrant (type II), estuarine migrant (type III), seawater resident (type IV), and seawater migrant (type V). A canonical discriminant analysis plot revealed separation of two groups (type II in the Yellow Sea vs. other types in remaining locations). Two locations on Jeju Island, despite their close proximity, had fish with quite different migration patterns, corroborating previous molecular studies that distinguished two groups of fishes. Conclusion: We successfully showed that the migration patterns of the Korean mullet varied by location. Only fish from the western sector of Jeju had a unique migration pattern, which is likely confined population in this area. Among the eight otolith elements measured, the Sr:Ca ratio was found to be the best indicator of migration pattern and population origin.

Keywords

References

  1. Bae SE, Kim EM, Park JY, Kim JK. Population genetic structure of the grass puffer (Tetraodontiformes: Tetraodontidae) in the northwestern Pacific revealed by mitochondrial DNA sequences and microsatellite loci. Mar Biodivers. 2020a;50:19 https://doi.org/10.1007/s12526-020-01042-2.
  2. Bae SE, Kim JK, Li C. A new perspective on biogeographic barrier in the flathead grey mullet (Pisces: Mugilidae) from the northwest Pacific. Genes Genom. 2020b;42:791-803 https://doi.org/10.1007/s13258-020-00942-8.
  3. Campana SE. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser. 1999;188:263-97. https://doi.org/10.3354/meps188263.
  4. Campana SE. Otolith elemental composition as a natural marker of fish stocks. In: Cadrin SX, Friedland KD, Waldman J, editors. Stock Identification Methods: Applications in Fishery Science. New York: Academic Press; 2005. p. 227-45.
  5. Campana SE, Thorrold SR. Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci. 2001;58:30-8 https://doi.org/10.1139/f00-177.
  6. Cardona L. Effects of salinity on the habitat selection and growth performance of Mediterranean flathead grey mullet Mugil cephalus (Osteichthyes, Mugilidae). Estuar Coast Shelf S. 2000;50:727-37 https://doi.org/10.1006/ecss.1999.0594.
  7. Chang CW, Iizuka Y. Estuarine use and movement patterns of seven sympatric Mugilidae fishes: the Tatu Creek estuary, central western Taiwan. Estuar Coast Shelf Sci. 2012;106:121-6 https://doi.org/10.1016/j.ecss.2012.04.023.
  8. Chang CW, Tzeng WN, Lee YC. Recruitment and hatching dates of grey mullet (Mugil cephalus L.) juveniles in the Tanshui estuary of northwest Taiwan. Zool Stud. 2000;39:99-106.
  9. Chang CW, Iizuka Y, Tzeng WN. Migratory environmental history of the grey mullet Mugil cephalus as revealed by otolith Sr:Ca ratios. Mar Ecol Prog Ser. 2004;269:277-88. https://doi.org/10.3354/meps269277.
  10. Chang M, Tzeng W, You C. Using otolith trace elements as biological tracer for tracking larval dispersal of black porgy, Acanthopagrus schlegeli and yellowfin seabream, A. latus among estuaries of western Taiwan. Environ Biol Fish. 2012;95:491-502 https://doi.org/10.1007/s10641-012-0081-7.
  11. Choi YM, Yoo JT, Choi JH, Choi KH, Kim JK, Kim YS, Kim JB. Ecosystem structure and trophic level to the oceanographic conditions around the waters of Jeju Island. J Environ Biol. 2008;29:419-25.
  12. Collins SM, Bickford N, McIntyre PB, Coulon A, Ulseth AJ, Taphorn DC, Flecker AS. Population structure of a neotropical migratory fish: contrasting perspectives from genetics and otolith microchemistry. Trans Am Fish Soc. 2013;142:1192-201 https://doi.org/10.1080/00028487.2013.804005.
  13. Daros FA, Spach HL, Sial AN, Correia AT. Otolith fingerprints of the coral reef fish Stegastes fuscus in southeast Brazil: a useful tool for population and connectivity studies. Reg Stud Mar Sci. 2016;3:262-72 https://doi.org/10.1016/j.rsma.2015.11.012.
  14. DiMaria RA, Miller JA, Hurst TP. Temperature and growth effects on otolith elemental chemistry of larval Pacific cod. Gadus macrocephalus. Environ Biol Fish. 2010;89:453-62 https://doi.org/10.1007/s10641-010-9665-2.
  15. Elsdon TS, Gillanders BM. Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Can J Fish Aquatic Sci. 2005;62:1143-52 https://doi.org/10.1139/f05-029.
  16. Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD. Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanogr Mar Biol Annu Rev. 2008;46:297-330.
  17. Fortunato RC, Galan AR, Alonso IG, Volpedo A, Dura VB. Environmental migratory patterns and stock identification of Mugil cephalus in the Spanish Mediterranean Sea, by means of otolith microchemistry. Estuar Coast Shelf. 2017;188:174-80 https://doi.org/10.1016/j.ecss.2017.02.018.
  18. Fazio F, Marafioti S, Arfuso F, Piccione G, Faggio C. Influence of different salinity on haematological and biochemical parameters of the widely cultured mullet, Mugil cephalus. Mar Freshw Behav Phy. 2013;46:211-8. https://doi.org/10.1080/10236244.2013.817728.
  19. Fowler AM, Smith SM, Booth DJ, Stewart J. Partial migration of grey mullet (Mugil cephalus) on Australia's east coast revealed by otolith chemistry. Mar Environ Res. 2016;119:238-44 https://doi.org/10.1016/j.marenvres. 2016.06.010.
  20. Gorski K, De Gruijter C, Tana R. Variation in habitat use along the freshwatermarine continuum by grey mullet Mugil cephalus at the southern limits of its distribution. J Fish Biol. 2015;87:1059-71 https://doi.org/10.1111/jfb.12777.
  21. Hong JM, Yoon JS, Lee TW. Age and growth of flathead grey mullet Mugil cephalus collected by a two-side fyke net in the coastal water off Taean. Korea. Korean J Ichthyol. 2014;26:194-201.
  22. Hsu CC, CW Chang, Y Iizuka, WN Tzeng. 2009. A growth check deposited at estuarine arrival in otoliths of juvenile flathead mullet (Mugil cephalus L.). Zool Stud. 2009;48:315-324.
  23. Hwang JH, Van SP, Choi BJ, Chang YS, Kim YH. The physical processes in the Yellow Sea. Ocean Coast Manag. 2014;102:449-57 https://doi.org/10.1016/j.ocecoaman.2014.03.026.
  24. Ibanez AL, Gutierrez BO. Climate variables and spawning migrations of the striped mullet and white mullet in the north-western area of the Gulf of Mexico. J Fish Biol. 2004;65:822-31 https://doi.org/10.1111/j.0022-1112.2004.00488.x.
  25. Jones B, Sall J. JMP statistical discovery software. Wiley Interdiscip Rev Comput Stat. 2011;3:188-94. https://doi.org/10.1002/wics.162
  26. Ke HM, Lin WW, Kao HW. Genetic diversity and differentiation of gray mullet (Mugil cephalus) in the coastal waters of Taiwan. Zool Sci. 2009;26:421-8 https://doi.org/10.2108/zsj.26.421.
  27. Kim JK, Bae SE, Lee SJ, Yoon MG. New insight into hybridization and unidirectional introgression between Ammodytes japonicus and Ammodytes heian (Trachiniformes, Ammodytidae). PloS One. 2017;12:e0178001. https://doi.org/10.1371/journal.pone.0178001.
  28. Ko JC, Kim JT, Kim SH, Rho HK. Fluctuation characteristic of temperature and salinity in coastal waters around Jeju Island. J Kor Fish Soc. 2007;40:394-410 https://doi.org/10.5657/kfas.2003.36.3.306.
  29. Kwon HK, Seo J, Cho HM, Kim G. Tracing different freshwater sources for nutrients and dissolved organic matter in coastal waters off Jeju Island using radon. Estuari Coast. 2018:1-9 https://doi.org/10.1007/s12237-018-0471-y.
  30. Lee JM, Kim G. Estimating submarine discharge of fresh groundwater from a volcanic island using a freshwater budget of the coastal water column. Geophys Res Lett. 2007;34:11 https://doi.org/10.1029/2007GL029818.
  31. Lee YW, Lee JM, Kim G. Identifying sharp hydrographical changes in phytoplankton community structure using HPLC pigment signatures in coastal waters along Jeju Island, Korea. Ocean Sci J. 2009;44:1-10 https://doi.org/10.1007/s12601-009-0001-8.
  32. Lie HJ, Cho CH. Seasonal circulation patterns of the Yellow and East China Seas derived from satellite-tracked drifter trajectories and hydrographic observations. Prog Oceanogr. 2016;146:121-41 https://doi.org/10.1016/j.pocean.2016.06.004.
  33. Lie HJ, Cho CH, Lee S. Tongue-shaped frontal structure and warm water intrusion in the southern Yellow Sea in winter. J Geophys Res. 2009;114:C01003 https://doi.org/10.1029/2007JC004683.
  34. Lim C, Park SH, Kim DY, Woo SB, Jeong KY. Influence of steric effect on the rapid sea level rise at Jeju Island, Korea. J Coast Res. 2017;79:189-93 https://doi.org/10.2112/SI79-039.1.
  35. Liu SYV, Wang CH, Shiao JC, Dai CF. Population connectivity of neon damsel, Pomacentrus coelestis, inferred from otolith microchemistry and mtDNA. Mar Freshwater Res. 2010;61:1416-24 https://doi.org/10.1071/MF10079.
  36. Miller JA, Banks MA, Gomez-Uchida D, Shanks AL. A comparison of population structure in black rockfish (Sebastes melanops) as determined with otolith microchemistry and microsatellite DNA. Can J Fish Aquat Sci. 2005;62:2189-98 https://doi.org/10.1139/f05-133.
  37. Moreira C, Froufe E, Sial AN, Caeiro A, Vaz-Pires P, Correia AT. Population structure of the blue jack mackerel (Trachurus picturatus) in the NE Atlantic inferred from otolith microchemistry. Fish Res. 2018;197:113-22 https://doi.org/10.1016/j.fishres.2017.08.012.
  38. Morrison MA, McKenzie JR, Gillanders BM, Tuck ID. Can otolith chemistry predict the natal origins of grey mullet (Mugil cephalus)? New Zeal Fish Assess Report. 2016;15:68.
  39. Nishimoto MM, Washburn L, Warner RR, Love MS, Paradis GL. Otolith elemental signatures reflect residency in coastal water masses. Environ Biol Fish. 2010;89:341-56 https://doi.org/10.1007/s10641-010-9698-6.
  40. Park KA, Lee EY, Chang E, Hong S. Spatial and temporal variability of sea surface temperature and warming trends in the Yellow Sea. J Marine Syst. 2015;143:24-38 https://doi.org/10.1016/j.jmarsys.2014.10.013.
  41. Park MO, Lee YW, Ahn JB, Kim SS, Lee SM. Spatiotemporal distribution characteristics of temperature and salinity in the coastal area of Korea in 2015. J Korean Soc Mar Environ. 2017;20:226-39 https://doi.org/10.7846/JKOSMEE.2017.20.4.226.
  42. Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandard newslett. 1997;21:115-44. https://doi.org/10.1111/j.1751-908X.1997.tb00538.x
  43. Proctor CH, Thresher RE. Effects of specimen handling and otolith preparation on concentration of elements in fish otoliths. Mar Biol. 1998;131:681-94 https://doi.org/10.1007/s002270050360.
  44. Radtke RL, Shafer DJ. Environmental sensitivity of fish otolith microchemistry. Mar Freshwater Res. 1992;43:935-51 https://doi.org/10.1071/MF9920935.
  45. Rooker JR, Secor DH, Zdanowicz VS, Itoh T. Discrimination of northern bluefin tuna from nursery areas in the Pacific Ocean using otolith chemistry. Mar Ecol Prog Ser. 2001;218:275-82. https://doi.org/10.3354/meps218275.
  46. Secor DH, A Henderson-Arzapalo, PM Piccoli. Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes?. J Exp Mar Biol Ecol. 1995;192:15-33. https://doi.org/10.1016/0022-0981(95)00054-U.
  47. Secor DH, Rooker JR. Is otolith strontium a useful scalar of life cycles in estuarine fishes?. Fish Res. 2000;46:359-371. https://doi.org/10.1016/S0165-7836(00)00159-4.
  48. Shen KN, Jamandre BW, Hsu CC, Tzeng WN, Durand JD. Plio-Pleistocene sea level and temperature fluctuations in the northwestern Pacific promoted speciation in the globally-distributed flathead mullet Mugil cephalus. BMC Evol Biol. 2011;11:83 https://doi.org/10.1186/1471-2148-11-83.
  49. Shen KN, Chang CW, Durand JD. Spawning segregation and philopatry are major prezygotic barriers in sympatric cryptic Mugil cephalus species. CR Biol. 2015;338:803-11 https://doi.org/10.1016/j.crvi.2015.07.009.
  50. Sturrock A, Trueman C, Darnaude A, Hunter E. Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? J Fish Biol. 2012;81:766-95. https://doi.org/10.1111/j.1095-8649.2012.03372.x
  51. Traina A, Oliveri E, Manta DS, Barra M, Mazzola S, Cuttitta A. Metals content in otoliths of Dicentrarchus labrax from two fish farms of Sicily. Environ Monit Assess. 2015;187:360 https://doi.org/10.1007/s10661-015-4434-5.
  52. Taillebois L, Barton DP, Crook DA, Saunders T, Taylor J, Hearnden M, Saunders RJ, Newman SJ, Travers MJ, Welch DJ, Greig A, Dudgeon C, Maher S, Ovenden JR. Strong population structure deduced from genetics, otolith chemistry and parasite abundances explains vulnerability to localized fishery collapse in a large Sciaenid fish, Protonibea diacanthus. Evol Appl. 2017;10:978-93. https://doi.org/10.1111/eva.12499.
  53. Wang C, Hsu C, Chang C, You C, Tzeng W. The migratory environmental history of freshwater resident flathead mullet Mugil cephalus L. in the Tanshui River, nothern Taiwan. Zool Stud. 2010;49:504-14.
  54. Wang CH, Hsu CC, Tzeng WN, You CF, Chang CW. Origin of the mass mortality of the flathead grey mullet (Mugil cephalus) in the Tanshui River, northern Taiwan, as indicated by otolith elemental signatures. Mar Pollut Bull. 2011;62:809-1813 https://doi.org/10.1016/j.marpolbul.2011.05.011.
  55. Wang CH. Otolith elemental ratios of flathead mullet Mugil cephalus in Taiwanese waters reveal variable patterns of habitat use. Estuar Coast Shelf S. 2014;151:124-30. https://doi.org/10.1016/j.ecss.2014.08.024.
  56. Yamane K, Shirai K, Nagakura Y, Otake T. Assessing the usefulness of otolith elemental compositions for evaluating the population structure of the Pacific herring Clupea pallasii in northern Japan. Fish Sci. 2012;78:295-307. https://doi.org/10.1007/s12562-011-0466-0.
  57. Yang S, Youn JS. Geochemical compositions and provenance discrimination of the central south Yellow Sea sediments. Mar Geol. 2007;243:229-41. https://doi.org/10.1016/j.margeo.2007.05.001.
  58. Yoon YH. Marine environments and phytoplankton community around Jeju Island, Korea in the early summer of 2016. Korean J Environ Biol. 2016;34:292-303 https://doi.org/10.11626/KJEB.2016.34.4.292.
  59. Zhang CI, Park HW, Kwon HC. Age and growth of the flathead grey mullet (Mugil cephalus) in the coastal water of Yeosu. J Kor Soc Fish Tech. 2011;47:203-13. https://doi.org/10.3796/KSFT.2011.47.3.203
  60. Zydlewski J, Wilkie MP. Freshwater to seawater transitions in migratory fishes. In: McCormick SD, Farrell AP, Brauner CJ, editors. Euryhaline fishes, fish physiologyseries. San Diego: Academic Press; 2012. p. 253-326.

Cited by

  1. A review of sea lamprey dispersal and population structure in the Great Lakes and the implications for control vol.47, pp.suppl1, 2020, https://doi.org/10.1016/j.jglr.2021.09.015