• Title/Summary/Keyword: Element variables

Search Result 1,390, Processing Time 0.022 seconds

Sensitivity analysis based on complex variables in FEM for linear structures

  • Azqandi, Mojtaba Sheikhi;Hassanzadeh, Mahdi;Arjmand, Mohammad
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.15-32
    • /
    • 2019
  • One of the efficient and useful tools to achieve the optimal design of structures is employing the sensitivity analysis in the finite element model. In the numerical optimization process, often the semi-analytical method is used for estimation of derivatives of the objective function with respect to design variables. Numerical methods for calculation of sensitivities are susceptible to the step size in design parameters perturbation and this is one of the great disadvantages of these methods. This article uses complex variables method to calculate the sensitivity analysis and combine it with discrete sensitivity analysis. Finally, it provides a new method to obtain the sensitivity analysis for linear structures. The use of complex variables method for sensitivity analysis has several advantages compared to other numerical methods. Implementing the finite element to calculate first derivatives of sensitivity using this method has no complexity and only requires the change in finite element meshing in the imaginary axis. This means that the real value of coordinates does not change. Second, this method has the lower dependency on the step size. In this research, the process of sensitivity analysis calculation using a finite element model based on complex variables is explained for linear problems, and some examples that have known analytical solution are solved. Results obtained by using the presented method in comparison with exact solution and also finite difference method indicate the excellent efficiency of the proposed method, and it can predict the sustainable and accurate results with the several different step sizes, despite low dependence on step size.

The use of discontinuous first and second-order mixed boundary elements for 2D elastostatics

  • Severcan, M.H.;Tanrikulu, A.K.;Tanrikulu, A.H.;Deneme, I.O.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.703-718
    • /
    • 2010
  • In classical higher-order discontinuous boundary element formulation for two-dimensional elastostatics, interpolation functions for different boundary variables (i.e., boundary displacements and tractions) are assumed to be the same. However, there is a derivational relationship between these variables. This paper presents a boundary element formulation, called Mixed Boundary Element Formulation, for two dimensional elastostatic problems in which above mentioned relationship is taking into account. The formulations are performed by using discontinuous first and second-order mixed boundary elements. Based on the formulations presented in this study, two computer softwares are developed and verified through some example problems. The results show that the present formulation is credible.

Vibration analysis of FG reinforced porous nanobeams using two variables trigonometric shear deformation theory

  • Messai, Abderraouf;Fortas, Lahcene;Merzouki, Tarek;Houari, Mohammed Sid Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.461-479
    • /
    • 2022
  • A finite element method analysis framework is introduced for the free vibration analyses of functionally graded porous beam structures by employing two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element. A comprehensive parametric study is carried out, with a particular focus on the effects of various structural parameters such as the dispersion patterns of GPL reinforcements and porosity, thickness ratio, boundary conditions, nonlocal scale parameter and strain gradient parameters. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams.

Finite element analysis of 2D turbulent flows using the logarithmic form of the κ-ε model

  • Hasebe, Hiroshi;Nomura, Takashi
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.21-47
    • /
    • 2009
  • The logarithmic form for turbulent flow analysis guarantees the positivity of the turbulence variables as ${\kappa}$ and ${\varepsilon}$ of the ${\kappa}-{\varepsilon}$ model by using the natural logarithm of these variables. In the present study, the logarithmic form is incorporated into the finite element solution procedure for the unsteady turbulent flow analysis. A backward facing step flow using the standard ${\kappa}-{\varepsilon}$ model and a flow around a 2D square cylinder using the modified ${\kappa}-{\varepsilon}$ model (the Kato-Launder model) are simulated. These results show that the logarithmic form effectively keeps adequate balance of turbulence variables and makes the analysis stable during transient or unsteady processes.

Parametric study on probabilistic local seismic demand of IBBC connection using finite element reliability method

  • Taherinasab, Mohammad;Aghakouchak, Ali A.
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.151-173
    • /
    • 2020
  • This paper aims to probabilistically evaluate performance of two types of I beam to box column (IBBC) connection. With the objective of considering the variability of seismic loading demand, statistical features of the inter-story drift ratio corresponding to the second, fifth and eleventh story of a 12-story steel special moment resisting frames are extracted through incremental dynamic analysis at global collapse state. Variability of geometrical variables and material strength are also taken into account. All of these random variables are exported as inputs to a probabilistic finite element model which simulates the connection. At the end, cumulative distribution functions of local seismic demand for each component of each connection are provided using histogram sampling. Through a parametric study on probabilistic local seismic demand, the influence of some geometrical random variables on the performance of IBBC connections is demonstrated. Furthermore, the probabilistic study revealed that IBBC connection with widened flange has a better performance than the un-widened flange. Also, a design procedure is proposed for WF connections to achieve a same connection performance in different stories.

Shape Optimization of Electric Machine Considering Uncertainty of Design Variable by Stochastic Finite Element Method (확률유한요소법을 이용한 설계변수의 불확실성을 고려한 전기기기의 형상최적설계)

  • Hur, Jin;Hong, Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.219-225
    • /
    • 2000
  • This paper presents the shape optimization considering the uncertainty of design variable to find robust optimal solution that has insensitive performance to its change of design variable. Stochastic finite element method (SFEM) is used to treat input data as stochastic variables. It is method that the potential values are series form for the expectation and small variation. Using correlation function of their variables, the statistics of output obtained form the input data distributed. From this, design considering uncertainty of design variables.

  • PDF

Numerical study of internally reinforced circular CFT column-to-foundation connection according to design variables

  • Kim, Hee-Ju;Ham, Junsu;Park, Ki-Tae;Hwang, Won-Sup
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.445-452
    • /
    • 2017
  • This study intends to improve the structural details of the anchors in the conventional CFT column-to-foundation connection. To that goal, finite element analysis is conducted with various design variables (number and embedded length of deformed bars, number, aspect ratio, height ratio and thickness ratio of ribs) selected based upon the results of loading test and strength evaluation. The finite element analysis is performed using ABAQUS and the analytical results are validated by comparison with the load-displacement curves obtained through loading test applying axial and transverse loads. The behavioral characteristics of the numerical model according to the selected design variables are verified and the corresponding results are evaluated.

3D Variable Node Solid Elements with Drilling Degrees of Freedom (회전자유도를 가지는 3차원 변절점 고체요소의 개발)

  • 최창근;정근영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.9-16
    • /
    • 1995
  • A new three-dimensional transition solid element with drilling degrees of freedom is presented. The proposed transition element is established by adding variable nodes to a basic 8-node element for an effective connection between the refined region and the coarse. The derivation of the element in this paper is based on the variational principles in which the drilling rotations are introduced as independent variables. This element was also improved through the addition of modified non-conforming modes. Numerical examples show that performance of the element and the applicability to 3D adaptations are satisfactory.

  • PDF

Parametric study using finite element simulation for low cycle fatigue behavior of end plate moment connection

  • Lim, Chemin;Choi, Wonchang;Sumner, Emmett A.
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.57-71
    • /
    • 2013
  • The prediction of the low cycle fatigue (LCF) life of beam-column connections requires an LCF model that is developed using specific geometric information. The beam-column connection has several geometric variables, and changes in these variables must be taken into account to ensure sufficient robustness of the design. Previous research has verified that the finite element model (FEM) can be used to simulate LCF behavior at the end plate moment connection (EPMC). Three critical parameters, i.e., end plate thickness, beam flange thickness, and bolt distance, have been selected for this study to determine the geometric effects on LCF behavior. Seven FEMs for different geometries have been developed using these three critical parameters. The finite element analysis results have led to the development of a modified LCF model for the critical parameter groups.

Updating of Finite Element Models Including Damping (감쇠를 포함한 유한요소모형의 개선)

  • Park, O-Cheol;Lee, Gun-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.708-713
    • /
    • 2007
  • Finite element model updating has been performed using an optimization technique in the paper. The objective function consists of natural frequencies, modal assurance criterion values, and bandwidths of modes, which are obtained from finite element analysis and experiment. Young's modulus and damping coefficient of the material are selected as design variables whose values are modified to make the objective function as small as possible. To consider the loading effect of an accelerometer, its mass and moment of inertia are added to design variables. This model updating method has been applied to a cantilever beam, and experimental data are measured by modal test.

  • PDF