• 제목/요약/키워드: Element variables

검색결과 1,390건 처리시간 0.023초

Nodeless Variables Finite Element Method and Adaptive Meshing Teghnique for Viscous Flow Analysis

  • Paweenawat Archawa;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1730-1740
    • /
    • 2006
  • A nodeless variables finite element method for analysis of two-dimensional, steady-state viscous incompressible flow is presented. The finite element equations are derived from the governing Navier-Stokes differential equations and a corresponding computer program is developed. The proposed method is evaluated by solving the examples of the lubricant flow in journal bearing and the flow in the lid-driven cavity. An adaptive meshing technique is incorporated to improve the solution accuracy and, at the same time, to reduce the analysis computational time. The efficiency of the combined adaptive meshing technique and the nodeless variables finite element method is illustrated by using the example of the flow past two fences in a channel.

FINITE ELEMENT METHOD FOR SOLVING BOUNDARY CONTROL PROBLEM GOVERNED BY ELLIPTIC VARIATIONAL INEQUALITIES WITH AN INFINITE NUMBER OF VARIABLES

  • Ghada Ebrahim Mostafa
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권3호
    • /
    • pp.613-622
    • /
    • 2023
  • In this paper, finite element method is applied to solve boundary control problem governed by elliptic variational inequality with an infinite number of variables. First, we introduce some important features of the finite element method, boundary control problem governed by elliptic variational inequalities with an infinite number of variables in the case of the control and observation are on the boundary is introduced. We prove the existence of the solution by using the augmented Lagrangian multipliers method. A triangular type finite element method is used.

자동 격자 생성법과 설계 요소를 이용한 형상 최적 설계에 관한 연구 (A Study on the Optimal Shape Design Using Automatic Regridding and Design Element)

  • 김호룡;단병주
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.87-96
    • /
    • 1993
  • In this study, the peak stress of a fuillet in elastic structure was optimized to have minimum value by using quadratic isoparametric element. The method of auomatic gridding was also developed along with shape algorithm and design element technique was adopted in selecting design variables. The computer program developed was combined with the Hooke-Jeeves direct algorithm of optimization techniques in order to minimize the peak stress of the fillet. The imployment of design element technique significantly cut down computer time by the reduction in design variables, and the opitmum fillet shape with uniform minimum stress was obtained by varying design variables along x and y directions in improving the shape compared to other results. By using automatic gridding, in which Bezier surfaces and Coons surfaces of cubic interpolation were employed, the irregular boundary was removed resulting in smoother anbd more accurate fillet shape possessing uniform minimum stress.

  • PDF

Round robin analysis to investigate sensitivity of analysis results to finite element elastic-plastic analysis variables for nuclear safety class 1 components under severe seismic load

  • Kim, Jun-Young;Lee, Jong Min;Park, Jun Geun;Kim, Jong-Sung;Cho, Min Ki;Ahn, Sang Won;Koo, Gyeong-Hoi;Lee, Bong Hee;Huh, Nam-Su;Kim, Yun-Jae;Kim, Jong-In;Nam, Il-Kwun
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.343-356
    • /
    • 2022
  • As a part of round robin analysis to develop a finite element elastic-plastic seismic analysis procedure for nuclear safety class 1 components, a series of parametric analyses was carried out on the simulated pressurizer surge line system model to investigate sensitivity of the analysis results to finite element analysis variables. The analysis on the surge line system model considered dynamic effect due to the seismic load corresponding to PGA 0.6 g and elastic-plastic material behavior based on the Chaboche combined hardening model. From the parametric analysis results, it was found that strains such as accumulated equivalent plastic strain and equivalent plastic strain are more sensitive to the analysis variables than von Mises effect stress. The parametric analysis results also identified that finite element density and ovalization option in the elbow elements have more significant effect on the analysis results than the other variables.

A new method of predicting hotspot stresses for longitudinal attachments with reduced element sensitivities

  • Li, Chun Bao;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.379-395
    • /
    • 2021
  • For the complicated structural details in ships and offshore structures, the traditional hotspot stress approaches are known to be sensitive to the element variables of element topologies, sizes, and integration schemes. This motivated to develop a new approach for predicting reasonable hotspot stresses, which is less sensitive to the element variables and easy to be implemented the real marine structures. The three-point bending tests were conducted for the longitudinal attachments with the round and rectangular weld toes. The tests were reproduced in the numerical simulations using the solid and shell element models, and the simulation technique was validated by comparing the experimental stresses with the simulated ones. This paper considered three hotspot stress approaches: the ESM method based on surface stress extrapolation, the Dong's method based on nodal forces along a weld toe, and the proposed method based on nodal forces perpendicular to an imaginary vertical plane at a weld toe. In order to study the element sensitivities of each method, 16 solid element models and 8 shell element models were generated under the bending and tension loads, respectively. The element sensitivity was analyzed in terms of Stress Concentration Factors (SCFs) in viewpoints of two statistical quantities of mean and bias with respect to the reference SCFs. The average SCFs predicted by the proposed method were remarkably in good agreement with the reference SCFs based on the experiments and the ship rules. Negligibly small Coefficients of Variation (CVs) of the SCFs, which is measure of statistical bias, were drawn by the proposed method.

Topological material distribution evaluation for steel plate reinforcement by using CCARAT optimizer

  • Lee, Dongkyu;Shin, Soomi;Park, Hyunjung;Park, Sungsoo
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.793-808
    • /
    • 2014
  • The goal of this study is to evaluate and design steel plates with optimal material distributions achieved through a specific material topology optimization by using a CCARAT (Computer Aided Research Analysis Tool) as an optimizer, topologically optimally updating node densities as design variables. In typical material topology optimization, optimal topology and layouts are described by distributing element densities (from almost 0 to 1), which are arithmetic means of node densities. The average element densities are employed as material properties of each element in finite element analysis. CCARAT may deal with material topology optimization to address the mean compliance problem of structural mechanical problems. This consists of three computational steps: finite element analysis, sensitivity analysis, and optimality criteria optimizer updating node densities. The present node density based design via CCARAT using node densities as design variables removes jagged optimal layouts and checkerboard patterns, which are disadvantages of classical material topology optimization using element densities as design variables. Numerical applications that topologically optimize reinforcement material distribution of steel plates of a cantilever type are studied to verify the numerical superiority of the present node density based design via CCARAT.

Proposal of residual stress mitigation in nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via elastic-plastic finite element analysis

  • Kim, Jong-Sung;Kim, Kyoung-Soo;Oh, Young-Jin;Oh, Chang-Young
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1451-1469
    • /
    • 2019
  • This paper proposes a residual stress mitigation of a nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via performing elastic-plastic finite element analysis. Residual stress distributions of the pipe bend were calculated by performing finite element analysis. Validity of the finite element analysis procedure was verified via comparing with temperature histories measured by using thermocouples, ultrasonic thickness measurement results, and residual stress measurement results by a hole-drilling method. Parametric finite element stress analysis was performed to investigate effects of the process and geometric shape variables on the residual stresses on inner surfaces of the pipe by applying the verified procedure. As a result of the parametric analysis, it was found that it is difficult to considerably reduce the inner surface residual stresses by changing the existing process and geometric shape variables. So, in order to mitigate the residual stresses, effect of an additional process such as cooling after the bending on the residual stresses was investigated. Finally, it was identified that the additional heating after the bending can significantly reduce the residual stresses while other variables have insignificant effect.

유한요소법과 상태방정식을 이용한 포워드 컨버터의 동작 특성 해석 (Characteristics Analysis of a Forward Converter by Finite Element Method and State Variables Equation)

  • 박성진;권병일;박승찬
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권9호
    • /
    • pp.467-475
    • /
    • 1999
  • This paper presents an analysis method of a forward converter, using both the finite element method considering the external circuit and a state variables equation. The converter operates at 50kHz and its one period is divided into two modes for the simplicity of the analysis. In the first mode, the switching transistor turns on and an input power is transferred into the load by the electromagnetic conversion action of a ferrite transformer. In the second mode, the switching transistor turns off and the stored energy in an inductor is delivered to the load, and the transformer core is demagnetized by the reset winding current. In this paper, time-stepping finite element method taking into account the on-state electrical circuit of the converter in used to analyze both the electrical circuit and electromagnetic field of the magnetic device during the first mode and the demagnetization period of the transformer core. Then a state variables equation for the circuit which the inductor current flows is constituted and solved during the second mode. As a result, the simulation results have been good agreement with the results obtained form experiment.

  • PDF

Numerical simulation of Y-type perfobond rib shear connectors using finite element analysis

  • Kim, Kun-Soo;Han, Oneil;Gombosuren, Munkhtulga;Kim, Sang-Hyo
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.53-67
    • /
    • 2019
  • This study presents finite element analysis (FEA) on a Y-type perfobond rib shear connection using Abaqus software. The performance of a shear connection is evaluated by conducting a push-out test. However, in practice, it is inefficient to verify the performance by conducting a push-out test with regard to all design variables pertaining to a shear connector. To overcome this problem, FEA is conducted on various shear connectors to accurately estimate the shear strength of the Y-type perfobond rib shear connection. Previous push-out test results for 14 typical push-out test specimens and those obtained through FEA are compared to analyze the shear behavior including consideration of the design variables. The results show that the developed finite element model successfully reflects the effects of changes in the design variables. In addition, using the developed FEA model, the shear resistance of a stubby Y-type perfobond rib shear connector is evaluated based on the concrete strength and transverse rebar size variables. Then, the existing shear resistance formula is upgraded based on the FEA results.

면외변형 링 요소를 이용한 고유해석 (An Eigen Analysis with Out-of-Plane Deformable Ring Element)

  • 문원주;민옥기;김용우
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1719-1730
    • /
    • 1993
  • This paper presents the theoretical natural frequencies of out-of-plane deformable ring based on the variables such as out-of-plane deflection, torsional rotation and shear rotation. Based on the same variables, a finite element eigen analysis is carried out by using the $C^0$-continuous, isoparametric element which has three nodes per element and three degrees-of-freedom at each node. Numerical experiments are peformed to find the integration scheme which produces accurate natural frequencies, natural modes and correct rigid body motion. The uniformly reduced integration and the selective reduced integration give more accurate numerical frequencies than the uniformly full integration, but the uniformly reduced integration produces incorrect rigid body motion while selective reduced integration does correct one. Therefore, the ring element based on the three variables which employes selective reduced integration is recommended to avoid spurious modes, to alleviate the error due to shear locking and to produce correct rigid body motion, simultaneously.