• Title/Summary/Keyword: Element technique

Search Result 2,888, Processing Time 0.033 seconds

A Study on Evaluating the Level of Service for Bridges using Fuzzy Approximate Reasoning (퍼지근사추론을 이용한 교량 서비스 수준 산정에 관한 연구)

  • Jo, Byung-Wan;Kim, Heon;Kim, Jang-Wook;Chi, Se-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.8-17
    • /
    • 2017
  • Infrastructures such as bridges and tunnels are crucial elements of national economic growth, and sudden collapses may lead to great catastrophes with significant social and economic losses, as well as a loss of lives. Hence, an efficient maintenance technique must be applied to guarantee safety, secure budgets to maintain a certain level of service, and prevent maintenance expenditures from being concentrated in a specific time period. Developed countries have experienced rapid increases in maintenance budgets, and maintenance costs now account for about 40% of the total maintenance budget. The level of service in asset management systems is an essential element for setting management goals and making priority decisions. Therefore, this study uses fuzzy theory to develop a new way to assess the level of service.The assessment model was applied to an actual bridge to evaluate the level of service for users.

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.

Tension Estimation for Hanger Cables on a Suspension Bridge Using Image Signals (영상신호를 이용한 현수교 행어케이블의 장력 추정)

  • Kim, Sung-Wan;Yun, Da-Woon;Park, Si-Hyun;Kong, Min-Joon;Park, Jae-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.112-121
    • /
    • 2020
  • In suspension bridges, hanger cables are the main load-supporting members. The tension of the hanger cables of a suspension bridge is a very important parameter for assessing the integrity and safety of the bridge. In general, indirect methods are used to measure the tension of the hanger cables of a suspension bridge in traffic use. A representative indirect method is the vibration method, which extracts modal frequencies from the cables' responses and then measures the cable tension using the cables' geometric conditions and the modal frequencies. In this study, the image processing technique is applied to facilitate the estimation of the dynamic responses of the cables using the image signal, for which a portable digital camcorder was used due to its convenience and cost-efficiency. Ambient vibration tests were conducted on a suspension bridge in traffic use to verify the validity of the back analysis method, which can estimate the tension of remote hanger cables using the modal frequencies as a parameter. In addition, the tension estimated through back analysis method, which was conducted to minimize the difference between the modal frequencies calculated using finite element analysis of the hanger cables and the measured modal frequencies, was compared with that measured using the vibration method.

Reliability Assessment Based on an Improved Response Surface Method (개선된 응답면기법에 의한 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • response surface method (RSM) is widely used to evaluate th e extremely smal probability of ocurence or toanalyze the reliability of very complicated structures. Althoug h Monte-Carlo Simulation (MCS) technique can evaluate any system, the procesing time of MCS dependson the reciprocal num ber of the probability of failure. The stochastic finite element method could solve thislimitation. However, it is limit ed to the specific program, in which the mean and coeficient o f random variables are programed by a perturbation or by a weigh ted integral method. Therefore, it is not aplicable when erequisite programing. In a few number of stage analyses, RSM can construct a regresion model from the response of the c omplicated structural system, thus, saving time and efort significantly. However, the acuracy of RSM depends on the dist ance of the axial points and on the linearity of the limit stat e functions. To improve the convergence in exact solution regardl es of the linearity limit of state functions, an improved adaptive response surface method is developed. The analyzed res ults have ben verified using linear and quadratic forms of response surface functions in two examples. As a result, the be st combination of the improved RSM techniques is determined and programed in a numerical code. The developed linear adapti ve weighted response surface method (LAW-RSM) shows the closest converged reliability indices, compared with quadratic form or non-adaptive or non-weighted RSMs.

Expression Levels of GABA-A Receptor Subunit Alpha 3, Gabra3 and Lipoprotein Lipase, Lpl Are Associated with the Susceptibility to Acetaminophen-Induced Hepatotoxicity

  • Kim, Minjeong;Yun, Jun-Won;Shin, Kyeho;Cho, Yejin;Yang, Mijeong;Nam, Ki Taek;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.112-121
    • /
    • 2017
  • Drug-induced liver injury (DILI) is the serious and fatal drug-associated adverse effect, but its incidence is very low and individual variation in severity is substantial. Acetaminophen (APAP)-induced liver injury accounts for >50% of reported DILI cases but little is known for the cause of individual variations in the severity. Intrinsic genetic variation is considered a key element but the identity of the genes was not well-established. Here, pre-biopsy method and microarray technique was applied to uncover the key genes for APAP-induced liver injury in mice, and a cause and effect experiment employing quantitative real-time PCR was conducted to confirm the correlation between the uncovered genes and APAP-induced hepatotoxicity. We identified the innately and differentially expressed genes of mice susceptible to APAP-induced hepatotoxicity in the pre-biopsied liver tissue before APAP treatment through microarray analysis of the global gene expression profiles (Affymetrix $GeneChip^{(R)}$ Mouse Gene 1.0 ST for 28,853 genes). Expression of 16 genes including Gdap10, Lpl, Gabra3 and Ccrn4l were significantly different (t-test: FDR <10%) more than 1.5 fold in the susceptible animals than resistant. To confirm the association with the susceptibility to APAP-induced hepatotoxicity, another set of animals were measured for the expression level of selected 4 genes (higher two and lower two genes) in the liver pre-biopsy and their sensitivity to APAP-induced hepatotoxicity was evaluated by post hoc. Notably, the expressions of Gabra3 and Lpl were significantly correlated with the severity of liver injury (p<0.05) demonstrating that these genes may be linked to the susceptibility to APAP-induced hepatotoxicity.

A Study on the Position and Meaning of the Back Garden in Wanggung-ri Site, Iksan (익산 왕궁리유적에서 후원의 위상과 의미에 대한 연구)

  • Jeon, Yong-Ho
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.4
    • /
    • pp.1-13
    • /
    • 2016
  • The Back garden in Wanggung-ri Site, Iksan clearly presents an aspect of the landscape gardening techniques of the Baekje, which are significantly unique in the landscape gardening history of East Asia as the structure connected to the main garden through a complex waterway system on a hill. The rear garden has a complex waterway system comprising a large inverted U-shape waterway and its branch waterways, sinuous waterway and water catchment system to enhance the landscape effect with a minimum amount of water on a hill, reducing damage by floods in the case of heavy rain and securing the amount of water required by the main space in the palace. A landscape element using various kinds and sizes of oddly shaped rocks decorated the water catchment area inside or around the large inverted U-shape waterway. On the top of the hill, the center in the Back garden, a building site in the size of 4 Kans each on the front and side was made on a square base surrounded by a round base stone. The building was identified on a space partially surrounded by the rectangular stonework on the left and right slope of the hill. While the functions and roles of the rectangular stonework are not accurately identified due to the poor conditions of the present site, the stonework may be related to the building inside it. The back garden in Wanggung-ri Site, Iksan has a winding pond-shaped waterway to pull or push water into or out of the garden in a rectangular pond shape, which was a conventional landscape gardening technique during the Baekje period. Since the main garden and the back garden in Wanggung-ri Site, Iksan form a systematic connection system, this paper tried to newly establish the main garden inside Iksan Wanggungseong as the 'royal garden'.

Development of Traffic Safety Monitoring Technique by Detection and Analysis of Hazardous Driving Events in V2X Environment (V2X 환경에서 위험운전이벤트 검지 및 분석을 통한 교통안전 모니터링기법 개발)

  • Jeong, Eunbi;Oh, Cheol;Kang, Kyeongpyo;Kang, Younsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2012
  • Traffic management centers (TMC) collect real-time traffic data from the field and have powerful databases for analysing, recording, and archiving the data. Recent advanced sensor and communication technologies have been widely applied to intelligent transportation systems (ITS). Regarding sensors, various in-vehicle sensors, in addition to global positioning system (GPS) receiver, are capable of providing high resolution data representing vehicle maneuverings. Regarding communication technologies, advanced wireless communication technologies including vehicle-to-vehicle (V2V) and vehicle-to-vehicle infrastructure (V2I), which are generally referred to as V2X, have been widely used for traffic information and operations (references). The V2X environment considers the transportation system as a network in which each element, such as the vehicles, infrastructure, and drivers, communicates and reacts systematically to acquire information without any time and/or place restrictions. This study is motivated by needs of exploiting aforementioned cutting-edge technologies for developing smarter transportation services. The proposed system has been implemented in the field and discussed in this study. The proposed system is expected to be used effectively to support the development of various traffic information control strategies for the purpose of enhancing traffic safety on highways.

Study of Game Interactive Storytelling Design : Focusing on The Elder Scrolls 5 Skyrim (게임 인터랙티브 스토리텔링 설계에 관한 연구 : The Elder Scrolls 5 Skyrim을 중심으로)

  • Mo, Yu-Tao;Kim, Seok-Kyoo
    • Journal of the Korean Society for Computer Game
    • /
    • v.31 no.4
    • /
    • pp.17-28
    • /
    • 2018
  • In recent years, Sandbox Games have become more and more popular in players, and The Elder Scrolls 5 Skyrim is the magnum opus of this type of game. However, the element of this game's attraction for players, which is why the game is fun to play is worth exploring in the territory of Game Design. In this paper, I will introduce the game The Elder Scrolls 5 Skyrim in detail, listing some of the game's storyline 、 Game Mechanics and analyze them. Researching the advantage and disadvantage viewed from the angle of Game Interactive Design. Finally by analyzing a large number of interactive storytelling cases in the game and the game experience brought to players, I get some universal principles in the game interactive storytelling design level. The research transforms the players' subjective intuition factor into a clear interactive storytelling design pattern, which aims to provide qualitative design criteria and framework for game interactive storytelling design. Then find a universal technique of Game Interactive Design, that is how to design a game interaction system for a sandbox game that will make the game attractive to players. And this may provide some guiding significance for the later Game Interactive Designing.

Using Topology Optimization, Light Weight Design of Vehicle Mounted Voltage Converter for Impact Loading (위상 최적화 기법을 이용한 충격하중에 대한 차량 탑재형 전력변환장치의 마운트 경량화 설계)

  • Ko, Dong-Shin;Lee, Hyun-Kyung;Hur, Deog-Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.353-358
    • /
    • 2018
  • In this study, it is describe to an optimization analysis process for the weight reduction of the voltage converter in the electric vehicle charging systems. The optimization design is a technique that finds the optimal material distribution under a given material quantity constraint by combining the design sensitivity with the material properties and the mathematical optimization. Among the topology optimization, a lightweight design is performed by a solid isotropic material with penalization with simple formula and well-convergence. The lightweight design consists of three steps. As a first step, a finite element model for the basic design of the on-board voltage converter was constructed and static analysis was performed on the load. In the second step, the optimum shape is obtained for the lightweight by performing the topology optimization using the solid isotropic material with penalization applying the stiffness coefficient of the isotropic material to the static analysis result. As a final step, impact analysis was performed by applying a half-sinusoidal pulse shape impact load which satisfies the impact test standard of the vehicle-mounted part with respect to the optimum shape. In the topology optimization, the design domain was defined as the mounting bracket area, and the design technology was finally achieved by optimizing the mounting bracket to achieve a weight reduction of 20% over the basic design.

Development of Design Space Exploration for Warship using the Concept of Negative Design (네거티브 설계 개념을 이용한 함정 설계영역탐색법 개발)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.412-419
    • /
    • 2019
  • Negative space in the discipline of art defines the space around and between the subject of an image. The use of negative space is an element of artistic composition, since it is occasionally used to artistic effect as the "real" subject of an image. In painting, it is a technique that negatively touches the background of an object to be expressed, so that it gives a feeling of unique texture and silhouette by touching unnecessary parts while leaving necessary parts. As in art, negative space in a design can also be useful to identify an image of infeasible design ranges with a straightforward view. Similarity between two disciplines leads to the introduction of the negative space concept for design space exploration. A rough design space exploration using statistics and visual analytics may support more efficient decision-making, and can provide meaningful insights into the direction of early-phase system design. For this, the approach guarantees dynamic interactions between visualized information and human cognitive systems. Visual analytics is useful to summarize complex and large-scale data. It is useful for identifying feasible design spaces, as well as for avoiding infeasible spaces or highly risky spaces. This paper investigates the possible use of the negative space concept by using an application example.