• 제목/요약/키워드: Element simulation

검색결과 4,576건 처리시간 0.028초

상계 유한요소 시뮬레이션 방법 (Upper-bound Finite Element Simulation Method)

  • 이충호
    • 소성∙가공
    • /
    • 제6권3호
    • /
    • pp.233-238
    • /
    • 1997
  • The estimation of the forming force required for metal forming process is unavoidable for selecting suitable machine and dimensioning die and punch parts. For this purpose the upper-bound method turns out to be very practical in simple two-dimensional cases under well-known boundary conditions. However, the application of this method for complicated two-or three-dimentional cases is very limited or practically impossible. The modified application of FEM in a manner of applying the upper bound method(the so-called Upper-bound Finite Element Simulation Method) fortunately provides the posibility of getting important information about the forming process in a simple and quick way before realizing the process on the machine. It is expected to function successfully even in three-dimentional cases. The application procedure has been explained for two-dimensional cases and its usefulness shown.

  • PDF

오메가형 벨로즈관의 성형을 위한 유한요소해석 (Finite Element Analysis for Forming Processes of $\Omega$-type Bellows Tube)

  • 이정훈;김낙수;전병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.165-170
    • /
    • 1997
  • The study presents an computer-aided analysis and its design for the forming process of $\Omega$-type bellows tube. Finite element analysis was carried out to perform the process simulation. Based on the analytic results of various conditions, the forming conditions used for angled U-type bellows tube were settled. The 3D modeling was constructed by I-DEAS and PAM-STAMP was used for process simulation. It is concluded that the spring back of formed bellows influences $\Omega$-shape and these results can be used for the process design.

  • PDF

잠열축열요소의 열전달에 관한 컴퓨터 시뮬레이션 (Computer Simulation for Heat Transfer Analysis of Latent Heat Storage Units)

  • 류영선;송현갑;조한근
    • Journal of Biosystems Engineering
    • /
    • 제17권4호
    • /
    • pp.336-343
    • /
    • 1992
  • In this study, to obtain basic information for the design of a latent heat storage system, (1) the cylindrical type and the rectangular type of latent heat storage elements were designed, (2) the finite element method was adopted for the prediction of temperature profile of phase change material in heating and cooling process, and (3) experiments were performed to verify the numerical solutions, and then (4) the optimum size of latent heat storage units was predicted by the computer simulation. The results could be summarized as follows : (1) In cooling process, the predicted temperatures of latent heat storage units by computer simulation were in good agreement with measured. (2) The effective diameter of cylindrical element was observed to be 28 mm and the effective thickness of rectangular element was observed to be 21 mm.

  • PDF

충격흡수용 복합부재의 에너지 흡수특성에 관한 유한요소해석 (Finite Element Analysis on the Energy Absorption Characteristics of Hybrid Structure)

  • 신현우
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.101-107
    • /
    • 2004
  • Recently the objective of vehicle design was focused on the crash safety and the energy saving. For the energy saving vehicle structures must be light weight, but for the crash safety some energy absorbing elements must be added. In this paper hybrid structure which consists of a steel and a FRP was studied on the energy absorption characteristics under the impact load by finite element method. Test results of the other researchers were compared with that of computer simulation on this simple hybrid structure. Side rail of vehicle front structure was replaced with hybrid materials for the application of the vehicle structure. 35mph frontal crash simulation was performed with hybrid structure and with conventional steel structure. By the adoption of hybrid structure, the improvement of energy absorption characteristics and reduction of weight was observed under the frontal crash simulation.

PTFE 일렉트렛트의 대전 과정 시뮬레이션 (Simulation of Charging Process in PTFE Electret)

  • 박건호;김상진;성낙진;배덕권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 춘계학술대회 논문집
    • /
    • pp.123-126
    • /
    • 2005
  • In this study, the Thermally Stimulated Current(TSC) of corona charged PTFE is studied and the simulation of corona charging process is also calculated by Finite Element Method. The electrets which were formed by applying high voltages (DC ${\pm}5{\sim}{\pm}8$ [kV]) to PTFE, are used to measure TSC in the temperature range of $-100{\sim}+200$ [$^{\circ}C$] and then the Finite Element Method is performed to examine corona charging process using a obtained physical constants. As a result. it is confirmed that the charging negative corona is profitable as the applications are manufactured, because the time constant of negative corona is much larger than it of positive corona. And it is attempted to estimate the corona charging process in space using simulation.

  • PDF

강소성 유한요소법을 이용한 다단계 디프드로잉의 공정개선에 관한 연구 (A Study on the Process Improvements of the Multi-stage Deep Drawing by the Rigid-plastic Finite Element Method)

  • 전병희;민동균;김형종;김낙수
    • 소성∙가공
    • /
    • 제3권4호
    • /
    • pp.440-453
    • /
    • 1994
  • The multi-stage deep-drawing processes including normal-drawing, reverse-drawing, and re-drawing are analyzed by use of the rigid-plastic finite element method. Computational results on the punch/die loads and thickness distributions were compared with the experiments of the current drawing processes. Deep-drawing processes of the redesigned shell to improve the specific strength and stiffness were simulated with the numerical method developed. With varying several process parameters such as blank size, corner radii of tools, and clearances, the simulation results showed the improvements in reducing the forming loads. Also forming defects were found during simulation and appropriate blank size could be verified.

  • PDF

Numerical study of wake structure behind a square cylinder at high Reynolds number

  • Lee, Sungsu
    • Wind and Structures
    • /
    • 제1권2호
    • /
    • pp.127-144
    • /
    • 1998
  • In this paper, the wake structures behind a square cylinder at the Reynolds number of 22,000 are simulated using the large eddy simulation, and the main features of the wake structure associated with unsteady vortex-shedding are investigated. The Smagorinsky model is used for parametrization of the subgrid scales. The finite element method with isoparametric linear elements is employed in the computations. Unsteady computations are performed using the explicit method with streamline upwind scheme for the advection term. The time integration incorporates a subcycling strategy. No-slip condition is enforced on the wall surface. A comparative study between two-and three-dimensional computations puts a stress on the three-dimensional effects in turbulent flow simulations. Simulated three-dimensional wake structures are compared with numerical and experimental results reported by other researchers. The results include time-averaged, phase-averaged flow fields and numerically visualized vortex-shedding pattern using streaklines. The results show that dynamics of the vortex-shedding phenomenon are numerically well reproduced using the present method of finite element implementation of large eddy simulation.

Improvement of the Representative Volume Element Method for 3-D Scaffold Simulation

  • Cheng Lv-Sha;Kang Hyun-Wook;Cho Dong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1722-1729
    • /
    • 2006
  • Predicting the mechanical properties of the 3-D scaffold using finite element method (FEM) simulation is important to the practical application of tissue engineering. However, the porous structure of the scaffold complicates computer simulations, and calculating scaffold models at the pore level is time-consuming. In some cases, the demands of the procedure are too high for a computer to run the standard code. To address this problem, the representative volume element (RVE) theory was introduced, but studies on RVE modeling applied to the 3-D scaffold model have not been focused. In this paper, we propose an improved FEM-based RVE modeling strategy to better predict the mechanical properties of the scaffold prior to fabrication. To improve the precision of RVE modeling, we evaluated various RVE models of newly designed 3-D scaffolds using FEM simulation. The scaffolds were then constructed using microstereolithography technology, and their mechanical properties were measured for comparison.

유한요소법을 이용한 PTFE 일렉트렛트의 코로나 대전 과정 시뮬레이션 (The Simulation of Corona Charging Process in Polytetrafluoroethylene Electret using Finite Element Method)

  • 이수길;유재웅;박건호;김충혁;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 춘계학술대회 논문집
    • /
    • pp.94-98
    • /
    • 1994
  • In this study, the thermally stimulated current(TSC) of corona charged PTFE film was studied and the simulation of corona charging process was also calculated by finite element method. The electrets which were formed by appling high voltages(DC-5∼-8[kV]) to PTFE film were experimented to measure TSC in the temperature range of -100∼+200 [$^{\circ}C$] and then the finite element method was accomplished to examine corona charging process using a obtained physical constants. It is confirmed that the charging negative corona is profitable as the applications are manufactured because the time constant of negative corona is much larger than it of positive corona. And it is attempted to estimate the corona charging process in space using simulation.

  • PDF

Investigation of bonding properties of Al/Cu bimetallic laminates fabricated by the asymmetric roll bonding techniques

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in Computational Design
    • /
    • 제4권1호
    • /
    • pp.33-41
    • /
    • 2019
  • In this study, 2-mm Al/Cu bimetallic laminates were produced using asymmetric roll bonding (RB) process. The asymmetric RB process was carried out with thickness reduction ratios of 10%, 20% and 30% and mismatch rolling speeds 1:1, 1:1.1 and 1:1.2, separately. For various experimental conditions, finite element simulation was used to model the deformation of bimetallic Al/Cu laminates. Specific attention was focused on the bonding strength and bonding quality of the interface between Al and Cu layers in the simulation and experiment. The optimization of mismatch rolling speed ratios was obtained for the improvement of the bond strength of bimetallic laminates during the asymmetric RB process. During the finite element simulation, the plastic strain of samples was found to reach the maximum value with a high quality bond for the samples produced with mismatch rolling speed 1:1.2. Moreover, the peeling surfaces of samples around the interface of laminates after the peeling test were studied to investigate the bonding quality by scanning electron microscopy.