• Title/Summary/Keyword: Element group

Search Result 1,213, Processing Time 0.028 seconds

ON FINITE GROUPS WITH EXACTLY SEVEN ELEMENT CENTRALIZERS

  • Ashrafi Ali-Reza;Taeri Bi-Jan
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.403-410
    • /
    • 2006
  • For a finite group G, #Cent(G) denotes the number of centralizers of its elements. A group G is called n-centralizer if #Cent(G) = n, and primitive n-centralizer if #Cent(G) = #Cent($\frac{G}{Z(G)}$) = n. The first author in [1], characterized the primitive 6-centralizer finite groups. In this paper we continue this problem and characterize the primitive 7-centralizer finite groups. We prove that a finite group G is primitive 7-centralizer if and only if $\frac{G}{Z(G)}{\simeq}D_{10}$ or R, where R is the semidirect product of a cyclic group of order 5 by a cyclic group of order 4 acting faithfully. Also, we compute #Cent(G) for some finite groups, using the structure of G modulu its center.

MONOIDAL FUNCTORS AND EXACT SEQUENCES OF GROUPS FOR HOPF QUASIGROUPS

  • Alvarez, Jose N. Alonso;Vilaboa, Jose M. Fernandez;Rodriguez, Ramon Gonzalez
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.351-381
    • /
    • 2021
  • In this paper we introduce the notion of strong Galois H-progenerator object for a finite cocommutative Hopf quasigroup H in a symmetric monoidal category C. We prove that the set of isomorphism classes of strong Galois H-progenerator objects is a subgroup of the group of strong Galois H-objects introduced in [3]. Moreover, we show that strong Galois H-progenerator objects are preserved by strong symmetric monoidal functors and, as a consequence, we obtain an exact sequence involving the associated Galois groups. Finally, to the previous functors, if H is finite, we find exact sequences of Picard groups related with invertible left H-(quasi)modules and an isomorphism Pic(HMod) ≅ Pic(C)⊕G(H∗) where Pic(HMod) is the Picard group of the category of left H-modules, Pic(C) the Picard group of C, and G(H∗) the group of group-like morphisms of the dual of H.

A CHARACTERIZATION OF GROUPS PSL(3, q) BY THEIR ELEMENT ORDERS FOR CERTAIN q

  • Darafsheh, M.R.;Karamzadeh, N.S.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.579-591
    • /
    • 2002
  • Let G be a finite group and $\omega$(G) the set of elements orders of G. Denote by h($\omega$(G)) the number of isomorphism classes of finite groups H satisfying $\omega$(G)=$\omega$(H). In this paper, we show that for G=PSL(3, q), h($\omega$(G))=1 where q=11, 12, 19, 23, 25 and 27 and h($\omega$(G)=2 where q = 17 and 29.

Static Analysis of Timoshenko Beams using Isogeometric Approach

  • Lee, Sang Jin;Park, Kyoung Sub
    • Architectural research
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2014
  • A study on the static analysis of Timoshenko beams is presented. A beam element is developed by using isogeometric approach based on Timoshenko beam theory which allows the transverse shear deformation. The identification of transverse shear locking is conducted by three refinement schemes such as h-, p- and k-refinement and compared to other reference solutions. From numerical examples, the present beam element does not produce any shear locking in very thin beam situations even with full Gauss integration rule. Finally, the benchmark tests described in this study is provided as future reference solutions for Timoshenko beam problems based on isogeometric approach.

Wire Drawing Process Design for Fine Rhodium Wire (로듐 미세 와이어 인발공정 설계)

  • Lee, I.K.;Lee, S.Y.;Kim, D.H.;Lee, J.W.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.244-249
    • /
    • 2018
  • Rhodium is a representative platinum group material. Rhodium is used in several industrial fields including jewelry, chemical reaction catalyst, electric component etc. In recently, ultra-fine rhodium wire has been applied to the pins of probe card used to test a semiconductor. In this study, in order to produce a fine rhodium wire with the diameter of $50{\mu}m$, a fine rhodium wire drawing process was designed. After design of the fine wire drawing process by using a uniform reduction ratio theory, finite element analysis was performed. Finally, fine wire drawing experiment was performed to verify the effectiveness of the designed process.

Synthesis and Antibacterial Activities of 4-Hydroxy-o-phenylphenol and 3,6-Diallyl-4-hydroxy-o-phenylphenol against a Cariogenic Bacterium Streptococcus mutans OMZ 176

  • Bae, Ki-Hwan;Koo, Sung-Hyun;Seo, Won-Jun
    • Archives of Pharmacal Research
    • /
    • v.14 no.1
    • /
    • pp.41-43
    • /
    • 1991
  • For the purpose of survey of the antibacterial activity against a cariogenic bacterium Streptococcus mutans OMZ 176 with the introduction of hydroxyl and allyl groups to o-phenylphenol (Fig. 2, 1), 4-hydroxy-o-phenylphenol (2), and 3,6-diallyl-4-hydroxy-o-phenylphenol (4) were synthesized, sucessively. The synthesized compounds, 2 and 4 showed more potent antibacterial activity than the starting material, 1. The hydroxyl group was supposed to the essential element for the antibacterial activity and the introduction of allyl group to phenolic ring to be another element to increase the activity.

  • PDF

A finite element-experimental study of the impact of spheres on aluminium thin plates

  • Micheli, Giancarlo B.;Driemeier, Larissa;Alves, Marcilio
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.263-280
    • /
    • 2015
  • This paper describes a study of the collision of hard steel spheres against aluminium thin circular plates at speeds up to 140 m/s. The tests were monitored by a high speed camera and a chronoscope, which allowed the determination of the ballistic limit and the plate deformation pattern. Quasi-static material parameters were obtained from tests on a universal testing machine and dynamic mechanical characterization of two aluminium alloys were conducted in a split Hopkinson pressure bar. Using a damage model, the perforation of the plates was simulated by finite element analysis. Axisymmetric, shell and solid elements were employed with various parameters of the numerical analysis being thoroughly discussed, in special, the dynamic model parameters. A good agreement between experiments and the numerical analysis was obtained.

Temperature Rise Prediction of 25.8kV 25kA Three-phase GIS Bus Bar (25.8kV 25kA 3상 GIS 모선의 온도상승 예측)

  • Kim, Joong-Kyoung;Hahn, Sung-Chin;Oh, Yeon-Ho;Park, Kyong-Yop
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.894-895
    • /
    • 2007
  • This paper presents coupled analysis between finite element method and analytic technique for predicting temperature rise of 25.8kV 25kA three-phase GIS bus bar. The power losses and temperature distribution of three-phase GIS bus bar model are analyzed by magneto-thermal finite element method. The heat transfer coefficients on the boundaries are analytically calculated by applying Nusselt number considering material constant and model geometry for the natural convection. And these are used as the input data to predict the temperature rise of three-phase GIS bus bar model by coupled magneto-thermal F.E.A. The predicted temperature of 25.8kV 25kA three-phase GIS bus bar model shows good agreement with the experimental data.

  • PDF

Generalized thermo-elastic interaction in a fiber-reinforced material with spherical holes

  • Hobiny, Aatef D.;Abbas, Ibrahim A.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.297-303
    • /
    • 2021
  • In this paper, a mathematical model is used to the evaluation of thermoelastic interactions in fiber-reinforced material with a spherical cavity. With the goal of establishing the generalized thermoelastic model with thermal relaxation time are exploited. inner surface of the spherical cavity is tractions free and loaded by the uniform step in temperature. The finite element scheme is used to get the problem numerical solutions. The numerical results have been discussed graphically to show the impacts of the presence and the absence of reinforcement.

Study on Evaluation Method of Structural Integrity of Cylindrical Composite Lattice Structures (원통형 복합재 격자구조체의 구조안전성 평가 기법 연구)

  • Im, Jae-Moon;Kang, Seung-Gu;Shin, Kwang-Bok;Lee, Sang-Woo
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.338-342
    • /
    • 2017
  • In this paper, evaluation method of structural integrity of cylindrical composite lattice structures was conducted. A finite element analysis was used to evaluate the structural integrity of composite lattice structures. In order to verify the optimal finite element in the evaluation of the structural integrity, finite element models for cylindrical composite lattice structure were generated using beam, shell and solid elements. The results of the finite element analyses with the shell and solid element models showed a good agreement. However, considerable differences were found between the beam element model and the shell and solid models. This occurred because the beam element does not take into account the degradation of the mechanical properties of the non-intersection parts of cylindrical composite lattice structures. It was found that the finite element analysis of evaluation of structural integrity for cylindrical composite lattice structures have to use solid element.