• Title/Summary/Keyword: Element Connectivity

Search Result 84, Processing Time 0.036 seconds

Development and Application of Two-Dimensional Numerical Tank using Desingularized Indirect Boundary Integral Equation Method (비특이화 간접경계적분방정식방법을 이용한 2차원 수치수조 개발 및 적용)

  • Oh, Seunghoon;Cho, Seok-kyu;Jung, Dongho;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.447-457
    • /
    • 2018
  • In this study, a two-dimensional fully nonlinear transient wave numerical tank was developed using a desingularized indirect boundary integral equation method. The desingularized indirect boundary integral equation method is simpler and faster than the conventional boundary element method because special treatment is not required to compute the boundary integral. Numerical simulations were carried out in the time domain using the fourth order Runge-Kutta method. A mixed Eulerian-Lagrangian approach was adapted to reconstruct the free surface at each time step. A numerical damping zone was used to minimize the reflective wave in the downstream region. The interpolating method of a Gaussian radial basis function-type artificial neural network was used to calculate the gradient of the free surface elevation without element connectivity. The desingularized indirect boundary integral equation using an isolated point source and radial basis function has no need for information about the element connectivity and is a meshless method that is numerically more flexible. In order to validate the accuracy of the numerical wave tank based on the desingularized indirect boundary integral equation method and meshless technique, several numerical simulations were carried out. First, a comparison with numerical results according to the type of desingularized source was carried out and confirmed that continuous line sources can be replaced by simply isolated sources. In addition, a propagation simulation of a $2^{nd}$-order Stokes wave was carried out and compared with an analytical solution. Finally, simulations of propagating waves in shallow water and propagating waves over a submerged bar were also carried and compared with published data.

Behavior of multi-story steel buildings under dynamic column loss scenarios

  • Hoffman, Seth T.;Fahnestock, Larry A.
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.149-168
    • /
    • 2011
  • This paper presents a computational study of column loss scenarios for typical multi-story steel buildings with perimeter moment frames and composite steel-concrete floors. Two prototype buildings (three-story and ten-story) were represented using three-dimensional nonlinear finite element models and explicit dynamic analysis was used to simulate instantaneous loss of a first-story column. Twelve individual column loss scenarios were investigated in the three-story building and four in the ten-story building. This study provides insight into: three-dimensional load redistribution patterns; demands on the steel deck, concrete slab, connections and members; and the impact of framing configuration, building height and column loss location. In the dynamic simulations, demands were least severe for perimeter columns within a moment frame, but the structures also exhibited significant load redistribution for interior column loss scenarios that had no moment connectivity. Composite action was observed to be an important load redistribution mechanism following column loss and the concrete slab and steel deck were subjected to high localized stresses as a result of the composite action. In general, the steel buildings that were evaluated in this study demonstrated appreciable robustness.

A Study of the Risk Communication on Management Policy of Asbestos Related Stakeholders (석면 이해집단의 위해도 의사소통 방법론에 관한 연구)

  • Son, Ji-Hwa;Lee, Chae-Kwan;Sim, Sang-Hyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.1
    • /
    • pp.79-90
    • /
    • 2014
  • Objectives: The aim of this study was to suggest preliminary data for the establishment of communication methodology of asbestos risk, fit for the features of each audiences, by grasping the features of risk communication by each element for each group survey. Methods: For this study, a questionnaire survey has been conducted from May to August 2012 and responses of 617 people including 214 school asbestos managers, 95 asbestos business managers, and 308 general public have been analyzed. Results: The feature by element of risk communication shows that to give information through non-governmental organizations with reliability such as colleges, research institutes, asbestos-related associations, etc among the entire investigated groups, is most effective. Lastly, for stakeholders related to asbestos, the public feedback for governmental asbestos management policy shows that it was considered that there is lack of reality due to comprehension deficit for situation, lack of a system of asbestos general management in the country and lack of policy connectivity among the branches of the government, and between the central government and the local government. However, the general public selected lack of various information disclosure, education, publicity for asbestos and lack of communication with citizens as the biggest problems.

Effective Finite Element Modeling for a Large Mirror System Using Separated Node Connectivity (비공유 Node를 이용한 대구경 거울의 효율적인 유한요소 모델링)

  • Pyun, Jae-Won;Yang, Ho-Soon;Lee, Jong-Ung;Moon, Il Kweon
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.304-313
    • /
    • 2017
  • The finite element analysis for optimizing a mirror system consisting of a large-diameter mirror and flexures requires numerous, repetitive calculations and corrections of the actual model to satisfy the given design conditions. In general, modification of this real model is conducted by reconfiguring nodes of the elements. The reconfiguration is very time-consuming work, to fix the continuity of each of the newly formed component nodes at the interfaces. But the process is a very important factor in determining the analysis time. To save time in modeling and actual computation, and to attain faster convergence, we present a new opto-mechanical analysis using non-shared node connections at each of the interfaces of the optical components. By comparing the results between the new element model and a conventional element model with shared node connections, we found that the opto-mechanical performance was almost the same, but the time to reach the given condition was drastically reduced.

Space Design for Enhancing Learning Ability with Children's Character Type - Through Analyzed Enneagram Tool - (어린이 성격유형별 학습능력 향상을 위한 공간디자인 구축 방안 - 에니어그램 성격 특성 분석을 통하여 -)

  • Kim, Kook-Sun
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 2013
  • The objective of this study is to explore basic type of character of humans and to suggest a design method of establishing a spatial construction environment for developing effective learning ability based on such type of character. As a range of research, spatial formative language was deduced and space design strategy for the children was suggested through an analysis of spatial requirements by exploring connectivity depending on features of 9 types of character through Enneagram. As a method of research, a process of suggesting a concrete method after defining an element of spatial construction and deducing a formative language for developing and strengthening effective learning ability for each type of character. As a result of research, the methods of children space design strategy for enhancing learning ability for leadership in a future specific fields were suggested through 9 different type of character with image of case study.

  • PDF

Study on the Preparation of the Piezoelectric Composite Materials in PZT Ceramics-Polymers by Extrusion Method and its Properties (압출가공방법에 의한 PZT세라믹스-고분자 압전복합재료의 제조 및 특성 연구)

  • 이덕출;김진수
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.74-78
    • /
    • 1990
  • In this study, to develope the ultrasonic transducer element, the extrusion method which is the processing technique of the piezoelectric composite materials is introduced, the connectivity of the piezoelectric composite materials is the 1-3 type, and we study the properties of the materials. The electromechanical coupling factor(kt) of the materials is above 0.6, the resonance property(fr) is the thickness mode in the frequency range of 0.5 to 2 [MHz] and the acoustic impedance(Zac) is about 5 to 7 [Maryl]. From these results, it is known that the piezoelectric composite materials manufactured byt he extrusion method will be able to develope the ultrasonic transducer elements.

  • PDF

Fault-Tolerant Algorithm using Multi-Connectivity of Communication Networks (통신망의 다중연결성을 이용한 결함허용 알고리즘)

  • Moon, Yun-Ho;Kim, Byung-Ki
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.1
    • /
    • pp.53-60
    • /
    • 2000
  • The purpose of this paper is to propose new recovery algorithm for case of a system element raises communication obstacle due to faults in networks, Also we are simulate the algorithm using adjacency matrix. We recover one faulty node per each excution of proposed algorithm so that we can be reconstruct the faulty system gradually to communicatable network. For that, this paper propose a new recovery algorithm named MATRECO which connect the recovery process is simulated by use of adjacency matrix.

  • PDF

Reconstruction of structured models using incomplete measured data

  • Yu, Yan;Dong, Bo;Yu, Bo
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.303-310
    • /
    • 2017
  • The model updating problems, which are to find the optimal approximation to the discrete quadratic model obtained by the finite element method, are critically important to the vibration analysis. In this paper, the structured model updating problem is considered, where the coefficient matrices are required to be symmetric and positive semidefinite, represent the interconnectivity of elements in the physical configuration and minimize the dynamics equations, and furthermore, due to the physical feasibility, the physical parameters should be positive. To the best of our knowledge, the model updating problem involving all these constraints has not been proposed in the existed literature. In this paper, based on the semidefinite programming technique, we design a general-purpose numerical algorithm for solving the structured model updating problems with incomplete measured data and present some numerical results to demonstrate the effectiveness of our method.

FE Model Improvement Using Experimental Data Under the Criterion of Eigen-Property Error Minimization (고유치 오차 최소화 기준에 따른 실험데이터에 의한 유한요소 모델 개선)

  • 지영춘;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.363-373
    • /
    • 1995
  • In this study, a FE model tuning method using experimental modal data was suggested after examining all the published conventional methods. The idea of this method is introducing scale factors to maintain both the structural connectivity and the consistency in the corrected stiffness matrix which makes it always possible to interpret the stiffness elements with the corresponding physical configuration of the targeting structure. The scale factors are determined to minimize the objective function of eigen-properties. The proposed method was tested to determine the joint stiffness of a T shaped beam. The test results were also compared with the tuned stiffness obtained from a probed commercial package (SYSTUNE) and found that this method is very accurate and compatible.

A Crack Propagation Analysis Algorithm Using Meshless Particle Method (무요소절점범을 이용한 균열진전해석 알고리즘 계발)

  • 이상호;이진우;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.53-59
    • /
    • 1998
  • A new algorithm using meshless particle method for the analysis of crack propagation problems is presented. The meshless particle method requires only a set of nodes and the description of boundaries in its formulation. The method is particulary useful for crack propagation problems due to the absence of any predefined element connectivity. Formulation procedures for the construction of displacement and shape functions are described. A numerical integration scheme and a strategy for the consideration of crack propagation are also described. Numerical examples show that the proposed method is very convenient and efficient in modeling crack problems and can guarantee the accuracy of solution in crack propagation analysis.

  • PDF