• Title/Summary/Keyword: Electrostatic potential

Search Result 261, Processing Time 0.027 seconds

Aggregation Processes of a Weak Polyelectrolyte, Poly(allylamine) Hydrochloride

  • Park, Jae-Jung;Choi, Young-Wook;Kim, Kyung-Bae;Chung, Hoe-Il;Sohn, Dae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.104-110
    • /
    • 2008
  • Poly(allylamine) hydrochloride is a weak cationic polyelectrolyte that exhibits different aggregation properties at different solution pH values and aging times. Specifically, after several days aging in a pH 3 buffer, less than 1 mg/mL poly(allylamine) hydrochloride became turbid, and the hydrodynamic radius increased with a single diffusion mode. However, the hydrodynamic radius did not change at high concentrations. The dynamic processes of polymer aggregations at different pH values were verified by a light scattering and zeta-potential apparatus. The major interaction was caused by the capturing of counterions by the polyelectrolyte, which generates electrostatic, hydrophobic and cation-p interactions.

Dynamic Characteristics Measurement of Micro Mirror for Image Display (화상처리용 마이크로 미러의 동특성 측정기술)

  • 이은호;김규로
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.371-376
    • /
    • 1997
  • A 100*100.mu.m$^{2}$ aluminum micro mirror is designed and fabricated using a thick photoresist as a sacrificial layer andas a mold for nickel electroplating. The micro mirror is composed of aluminum mirror plate, two nickel support posts, two aluminum hinges, two address eletrodes, and two landing electrodes. The aluminum mirror plate,which is supported by two nickel support posts, is overhung about 10.mu.m from the silicon substrate. THe aluminum mirror plate is actuated like a seesaw by electrostatic force generated by electic potential difference applied between the mirror plate and the address electrode. This paper presents some methods to measure the optical and the dynamic characteristics of the fabricated micro mirror.

  • PDF

A Study on The Distribution of Surface Charge Density on Polymer Insulators (고분자애자의 표면전하밀도 분포에 관한 연구)

  • Yang, J.J.;Hwang, B.M.;Kim, K.S.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.354-356
    • /
    • 1997
  • In this paper, we study the distribution of surface charge density on polymer insulators. The electric field of polymer insulators is calculated by axisymetric 3-D FEM with dc source. And the surface charge density is calculated by electric scalar potential and boundary condition for electrostatic fields. Simulation model is the inclined type polymer insulator with a shed.

  • PDF

Space Charge Analysis in Polymers Irradiated by an E-Beam (전자빔이 조사된 고분자에서 공간전하 분석)

  • Cho, Choong-Won;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2309-2310
    • /
    • 2008
  • The surface made of dielectric materials can therefore become probable sites for damaging electrostatic discharges. Thanks to a specially equipped chamber, the spatial environment can be reproduced experimentally in the laboratory. In this paper, the behavior of high energy electrons injected in polymers such as PolyMethylMetaAcrylate (PMMA) and Kpton is studied. Results obtained by surface potential technique, pulse-electro acoustic device and a cell based on the split Faraday cup system are analyzed and discussed.

  • PDF

Adsorption mechanism of copper ions on porous chitosan membranes: Equilibrium and XPS study

  • Ghaee, Azadeh;Zerafat, Mohammad Mahdi
    • Membrane and Water Treatment
    • /
    • v.7 no.6
    • /
    • pp.555-571
    • /
    • 2016
  • Heavy metal contamination has attracted considerable attention during recent decades due to the potential risk brought about for human beings and the environment. Several adsorbent materials are utilized for the purification of contaminated water resources among which chitosan is considered as an appropriate alternative. Copper is a heavy metal contaminants found in several industrial wastewaters and its adsorption on porous and macroporous chitosan membranes is investigated in this study. Membranes are prepared by phase inversion and particulate leaching method and their morphology is characterized using SEM analysis. Batch adsorption experiments are performed and it is found that copper adsorption on macroporous chitosan membrane is higher than porous membrane. The iso-steric heat of adsorption was determined by analyzing the variations of temperature to investigate its effect on adsorption characteristics of macroporous chitosan membranes. Furthermore, desorption experiments were studied using NaCl and EDTA as eluants. The mechanism of copper adsorption was also investigated using XPS spectroscopy which confirms simultaneous occurrence of chelation and electrostatic adsorption mechanisms.

Molecular Dynamics Simulation of Deformation of Polymer Resist in Nanoimpirnt Lithography (나노임프린트 리소그래피에서의 폴리머 레지스트의 변형에 관한 분자 동역학 시뮬레이션)

  • Kim Kwang-Seop;Kim Kyung-Woong;Kang Ji-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.852-859
    • /
    • 2005
  • Molecular dynamics simulations of nanoimprint lithography in which a stamp with patterns is pressed onto amorphous poly-(methylmethacrylate) (PMMA) surface are performed to study the deformation of polymer. Force fields including bond, angle, torsion, inversion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and stamp. Periodic boundary condition is used in horizontal direction and Nose-Hoover thermostat is used to control the system temperature. As the simulation results, the adhesion forces between stamp and polymer are calculated and the mechanism of deformation are investigated. The effects of the adhesion and friction forces on the polymer deformation are also studied to analyze the pattern transfer in nanoimprint lithography. The mechanism of polymer deformation is investigated by means of inspecting the indentation process, molecular configurational properties, and molecular configurational energies.

Optimization of Chitosan-Alginate Encapsulation Process Using Pig Hepatocytes or Development of Bioartificial Liver

  • LEE , JI-HYUN;LEE, DOO-HOON;SON, JEONG-HWA;PARK, JUNG-KEUG;KIM, SUNG-KOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • Chitosan-alginate capsules were formed by electrostatic interactions and exhibited an appropriate mechanical strength, permeability, and stability for the culture of hepatocytes. Pig hepatocytes were isolated and hepatocyte spheroids formed and immobilized in chitosan-alginate capsules. An encapsulation procedure of 3 min and spheroid formation period of 24 h were the optimum conditions for the best liver functions. Pig hepatocytes with a cell density of $6.0{\tomes}10^6$ cells/ml in the capsules were found to be most suitable for application in a bioartificial liver support system. The encapsulated pig hepatocyte spheroids exhibited stable ammonia removal and urea secretion rates in a bioreactor for 2 weeks. Accordingly, chitosan-alginate encapsulated hepatocyte spheroids in a packed-bed bioreactor would appear to have potential as a bioartificial liver.

SIMULATION OF THIN-FILM FIELD EMITTER TRIODE

  • Park, Kyung-Ho;Lee, Soon-Il;Koh, Ken-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.651-654
    • /
    • 2002
  • We carried out 2-dimensional numerical calculations of electrostatic potential for triode field emitters with planar cathodes using the finite element method. As it turned out, the conventional triode structure with a planar cathode suffered from large gate current and wide spreading of emitted electrons. To circumvent these shortcomings, we proposed a new triode structure. By simply inserting a conducting layer of proper thickness on top of the cathode layer, we were able to modify the electric field distribution on the cathode surface so that low gate current and electron-focusing effect were achieved, simultaneously.

  • PDF

Diagnostics of Inductively Coupled $BCl_3/Ar$ Plasma Characteristics Using Quadrupole Mass Spectrometer (사중극자 질량 분석기를 이용한 $BCl_3/Ar$ 유도결합 플라즈마 특성 진단)

  • Kim, Gwan-Ha;Kim, Chang-Il
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.4
    • /
    • pp.204-208
    • /
    • 2006
  • In this study, we investigated the ion energy distributions in a chlorine based inductively coupled plasma by quadrupole mass spectrometer with an electrostatic ion energy analyzer. Ion energy distributions are presented for various plasma parameters such as $BCl_3/Ar$ gas mixing ratio, RF power, and process pressure. As the $BCl_3/Ar$ gas mixing ratio and process pressure decreases, and RF power increases, the saddle-shaped structures is enhanced. The reason is that there are ionized energy difference between $BCl_3$ and Ar, change of plasma potential, alteration of mean free path. and variety of ion collision in the sheath.

Potential-Field-Based Anycast Routing in Large-Scale Wireless Mesh Networks : A Distributed Algorithm based on Finite Difference Method (광역 무선 메쉬 네트워크에서 포텐셜 필드 기반 애니캐스트 라우팅 : 유한 차분법 응용 분산 알고리즘)

  • Jung, Sang-Su;Kserawi, Malaz;Rhee, June-Koo Kevin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.683-687
    • /
    • 2010
  • In this paper, we propose an anycast routing scheme for large-scale wireless mesh networks, which requires only one-hop local information with no flooding overhead. We develop an analytical model for anycast mesh networks based on an electrostatic theory. A finite difference method contributes to achieving gateway load balancing with constant control overheads. We verify the performance of the proposed scheme by simulations.