• Title/Summary/Keyword: Electrostatic clamping pressure

Search Result 5, Processing Time 0.017 seconds

Fabrication and Characterization of High Temperature Electrostatic Chucks

  • Bang, Jae-Cheol
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.87-90
    • /
    • 1999
  • It was suggested that tape casting method can be used to fabricate high-temperature electrostatic chucks(HTESC) based on a metal substrate coated with a glass-ceramic insulating layer. The adhesion of the coating was excellent such that it was able to withstand temperature cycling to over $300^{\circ}C$ without spalling. The electrostatic clamping pressure reached a very high value of about 9 torr at 600V and generally followed the theoretical voltage-squared curve. Based on these results, we believe that we successfully developed a viable technique for manufacturing low cost HTESC.

  • PDF

Fabrication of Electrostatic Chucks Using Borosilicate Glass Coating as an Insulating Layer (붕규산염 유리를 절연층으로 도포한 정전척의 제조)

  • Bang, Jae-Cheol;Lee, Ji-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.390-393
    • /
    • 2001
  • This study demonstrated the feasibility of tape casting method to fabricate soda borosilicate glass-coated stainless steel electrostatic chucks(ESC) for low temperature semiconductor processes. The glass coatings on the stainless steel substrates ranged from $100{\mu}m$ to $150{\mu}m$ thick. The adhesion of the glass coatings was found to be excellent such that it was able to withstand moderate impact tests and temperature cycling to over $300^{\circ}C$ without cracking and delamination. The electrostatic clamping pressure generally followed the theoretical voltage-squared curve except at elevated temperatures and higher applied voltages when deviations were observed to occur. The deviation is due to increased leakage current at higher temperature and applied voltage as the electrical resistivity drops.

  • PDF

Fabrication of Electrostatic Chucks Using Borosilicate Glass Coating as an Insulating Layer (붕규산염 유리를 절연층으로 도포한 정전척의 제조)

  • 방재철;이지형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.390-393
    • /
    • 2001
  • This study demonstrated the feasibility of tape casting method to fabricate soda borosilicate glass-coated stainless steel electrostatic chucks(ESC) for low temperature semiconductor processes. The glass coatings on the stainless steel substrates ranged from 100 $\mu\textrm{m}$ to 150 $\mu\textrm{m}$ thick. The adhesion of the glass coatings was found to be excellent such that it was able to withstand moderate impact tests and temperature cycling to over 300$^{\circ}C$ without cracking and delamination. The electrostatic clamping pressure generally followed the theoretical voltage-squared curve except at elevated temperatures and higher applied voltages when deviations were observed to occur. The deviation is due to increased leakage current at higher temperature and applied voltage as the electrical resistivity drops.

  • PDF

Fabrication of Glass-Ceramic Coacted Electrostatic Chucks by Tape Casting (테이프캐스팅에 의한 결정화유리 도포형 정전척의 제조)

  • 방재철;이경호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.169-172
    • /
    • 2002
  • This study demonstrated the feasibility of using tape-casting followed by sintering as a low-cost alternative for coating glass-ceramic or glass film on a metal substrate. The process has been successfully used to fabricate a glass-on-stainless steel and a glass-ceramic-on-molybdenum electrostatic chuck(ESC) with the insulating layer thickness about $150{\mu}{\textrm}{m}$. Electrical resistivity data of the coaling were obtained between room temperature and 55$0^{\circ}C$; although the resistivity values dropped rapidly with increasing temperature in both coatings, the glass-ceramic still retained a high value of $10^{10}$ ohm-cm at $500^{\circ}C$. Clamping pressure measurements were done using a mechanical apparatus equipped with a load-cell at temperatures up to $350^{\circ}C$ and applied voltages up to 600V; the clamping behavior of all ESCs generally followed the voltage-squared curve as predicted by theory. Based on these results, we believe that we have a viable technology for manufacturing ESCs for use in reactive-ion etch systems.

  • PDF

Fabrication of Soda Borosilicate Class-Coated Electrostatic Chucks (소다붕규산염유리 도포형 정전척의 제조)

  • 방재철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.49-52
    • /
    • 2002
  • This study demonstrated the feasibility of tape casting method to fabricate soda borosilicate glass-coated stainless steel electrostatic chucks(ESC) for low temperature semiconductor processes. Glass coating on the stainless steel substrate was 125 $\mu\textrm{m}$ thick. The adhesion of glass coating was found to be excellent such that it was able to withstand temperature cycling to over $300^{\circ}C$ without cracking and delamination. The electrostatic clamping pressure generally followed the theoretical voltage-squared curve except at elevated temperatures and high applied voltages. The deviations at elevated temperatures and high applied voltages are due to increased leakage current as the electrical resistivity of glass coating drops.

  • PDF