• Title/Summary/Keyword: Electrostatic Frequency

Search Result 129, Processing Time 0.023 seconds

A Disparate Low Loss DC to 90 GHz Wideband Series Switch

  • Gogna, Rahul;Jha, Mayuri;Gaba, Gurjot Singh;Singh, Paramdeep
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.92-97
    • /
    • 2016
  • This paper presents design and simulation of wide band RF microswitch that uses electrostatic actuation for its operation. RF MEMS devices exhibit superior high frequency performance in comparison to conventional devices. Similar techniques that are used in Very Large Scale Integration (VLSI) can be employed to design and fabricate MEMS devices and traditional batch-processing methods can be used for its manufacturing. The proposed switch presents a novel design approach to handle reliability concerns in MEMS switches like dielectric charging effect, micro welding and stiction. The shape has been optimized at actuation voltage of 14-16 V. The switch has an improved restoring force of 20.8 μN. The design of the proposed switch is very elemental and primarily composed of electrostatic actuator, a bridge membrane and coplanar waveguide which are suspended over the substrate. The simple design of the switch makes it easy for fabrication. Typical insertion and isolation of the switch at 1 GHz is -0.03 dB and -71 dB and at 85 GHz it is -0.24 dB and -29.8 dB respectively. The isolation remains more than - 20 db even after 120 GHz. To our knowledge this is the first demonstration of a metal contact switch that shows such a high and sustained isolation and performance at W-band frequencies with an excellent figure-of merit (fc=1/2.pi.Ron.Cu =1,900 GHz). This figure of merit is significantly greater than electronic switching devices. The switch would find extensive application in wideband operations and areas where reliability is a major concern.

Low frequency noise characteristics of SiGe P-MOSFET in EDS (ESD(electrostatic discharge)에 의한 SiGe P-MOSFET의 저주파 노이즈 특성 변화)

  • Jeong, M.R.;Kim, T.S.;Choi, S.S.;Shim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.95-95
    • /
    • 2008
  • 본 연구에서는 SiGe p-MOSFET을 제작하여 I-V 특성과 게이트 길이, $V_D$, $V_G$의 변화에 따른 저주파 노이즈특성을 측정하였다. Si 기판위에 성장한 $Si_{0.88}Ge_{0.12}$으로 제작된 SiGe p-MOSFET의 채널은 게이트 산화막과 20nm 정도의 Si Spacer 층으로 분리되어 있다. 게이트 산화막은 열산화에 의해 70$\AA$으로 성장되었고, 게이트 폭은 $25{\mu}m$, 게이트와 소스/드레인 사이의 거리는 2.5때로 제작되었다. 제작된 SiGe p-MOSFET은 빠른 동작 특성, 선형성, 저주파 노이즈 특성이 우수하였다. 제작된 SiGe p-MOSFET의 ESD 에 대한 소자의 신뢰성과 내성을 연구하기 위하여 SiGe P-MOSFET에 ESD를 lkV에서 8kV까지 lkV 간격으로 가한 후, SiGe P-MOSFET의 I-V 특성과 게이트 길이, $V_D$, $V_G$의 변화에 따른 저주파 노이즈특성 변화를 분석 비교하였다.

  • PDF

The Study of the Harmonic Currents Effects on the Transformer Vibration (고조파 전류가 변압기 진동에 미치는 영향에 관한 연구)

  • Kim, Su-Yeol;Kim, Yeon-Whan;Kim, Jang-Mok;Lim, Ik-Hun;Lee, Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.106-111
    • /
    • 2000
  • EP(Electrostatic Precipitator) has been used to keep the natural environment from fly-ash in the industrial fields and operated in intermittent PEC(Pulse Energized Control) mode to improve dust-collecting efficiency. Intermittent PEC mode induces low-frequency harmonic currents into power system, therefore EP transformer vibrates. This continuous transformer vibration developes transformer abnormal audio-noise and if it is too much or operates in the region of natural frequency, transformer will be damaged in the end. EP interruption caused by transformer damage results in power generation stopped, power quality down and economic loss. Therefore, this paper explains harmonic currents and transformer vibration-core vibration, winding vibration, and proposes the measures of suppressing the vibration with EP operated in intermittent PEC mode. And this results is proposed to be used for future EP transformer design or EP control method to operate EP-concerned equipment safely keeping from system faults caused by transformer vibration.

  • PDF

Prediction of Physicochemical Properties of Organic Molecules Using Semi-Empirical Methods

  • Kim, Chan Kyung;Cho, Soo Gyeong;Kim, Chang Kon;Kim, Mi-Ri;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1043-1046
    • /
    • 2013
  • Prediction of physicochemical properties of organic molecules is an important process in chemistry and chemical engineering. The MSEP approach developed in our lab calculates the molecular surface electrostatic potential (ESP) on van der Waals (vdW) surfaces of molecules. This approach includes geometry optimization and frequency calculation using hybrid density functional theory, B3LYP, at the 6-31G(d) basis set to find minima on the potential energy surface, and is known to give satisfactory QSPR results for various properties of organic molecules. However, this MSEP method is not applicable to screen large database because geometry optimization and frequency calculation require considerable computing time. To develop a fast but yet reliable approach, we have re-examined our previous work on organic molecules using two semi-empirical methods, AM1 and PM3. This new approach can be an efficient protocol in designing new molecules with improved properties.

Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

  • Kim, Vitaly P.;Hegai, Valery V.;Liu, Jann Yenq;Ryu, Kwangsun;Chung, Jong-Kyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.251-256
    • /
    • 2017
  • The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth's surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ${\sim}7{\times}10^5$ more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

A Study on the Technology Diagnosing Particles with Two Acoustic Emission Sensors Which have the Different Characteristics of Frequency in GIS (주파수특성이 다른 2개의 초음파 친서에 의한 GIS 이물진단 기술 연구)

  • 김광화;최재구;선종호;김익수;윤진열
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.5
    • /
    • pp.219-225
    • /
    • 2003
  • This paper described about the acoustic wave measurement method to diagnose GIS for particles. We measured and analyzed the signals of acoustic waves with two type acoustic sensors having 125kHz and 50kHz resonant frequency respectively when the particles were bounced on the inside surfaces of GIS tanks by the electrostatic force. To use two sensors for the diagnosis of GIS, we set up the calibration method for this measurement method. We showed the output characteristics of two sensors according to the sizes and materials of particles in the experiment. As the results, the inception voltages bouncing particles depended on the materials and the extinction voltages bouncing them depended on the sizes and materials. We found out that the relationship between sizes of particles and output voltages of sensors didn't have linearity but the ratios of between peak values of two sensors depended on the materials of GIS enclosures and the sizes of particles.

A Study on the Technology Diagnosing Particles with Two Acoustic Emission Sensors Which have the Different Characteristics of Frequency in GIS (주파수특성이 다른 2개의 초음파 친서에 의한 GIS 이물진단 기술 연구)

  • 김광화;최재구;선종호;김익수;윤진열
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.219-219
    • /
    • 2003
  • This paper described about the acoustic wave measurement method to diagnose GIS for particles. We measured and analyzed the signals of acoustic waves with two type acoustic sensors having 125kHz and 50kHz resonant frequency respectively when the particles were bounced on the inside surfaces of GIS tanks by the electrostatic force. To use two sensors for the diagnosis of GIS, we set up the calibration method for this measurement method. We showed the output characteristics of two sensors according to the sizes and materials of particles in the experiment. As the results, the inception voltages bouncing particles depended on the materials and the extinction voltages bouncing them depended on the sizes and materials. We found out that the relationship between sizes of particles and output voltages of sensors didn′t have linearity but the ratios of between peak values of two sensors depended on the materials of GIS enclosures and the sizes of particles.

Dynamic analysis of magnetorheological elastomer sandwich MEMS sensor under magnetic field

  • Akhavan, Hossein;Ehyaei, Javad;Ghadiri, Majid
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.705-714
    • /
    • 2022
  • In this paper, the effect of magnetic field on the vibration behavior of a Magnetorheological elastomer (MRE) sandwich MEMS actuated by electrostatic actuation with conductive skins are examined within the multiple scales (MMS) perturbation method. Magnetorheological smart materials have been widely used in vibration control of various systems due to their mechanical properties change under the influence of different magnetic fields. To investigate the vibrational behavior of the movable electrode, the Euler-Bernoulli beam theory, as well as Hamilton's principle is used to derive the equations and the related boundary conditions governing the dynamic behavior of the system are applied. The results of this study show that by placing the Magnetorheological elastomer core in the movable electrode and applying different magnetic fields on it, its natural vibrational frequency can be affected so that by increasing the applied magnetic field, the system's natural frequency increases. Also, the effect of various factors such as the electric potential difference between two electrodes, changes in the thickness of the core and the skins, electrode length, the distance between two electrodes and also change in vibration modes of the system on natural frequencies have been investigated.

Measurements of Fast Transient Voltages due to Human Electrostatic Discharges (인체에 대전된 정전기 방전에 의해 발생한 급속과도전압의 측정)

  • 이복희;이동문;강성만;엄주홍;이태룡;이승칠
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.108-116
    • /
    • 2002
  • This paper presents the measurements and evaluation of voltage waveforms due to human electrostatic discharge(ESD). The principle of operation and design rule of a new device for measuring the ESD fast transient voltages with very fast rise time were described. Peak values and rise time of ESD voltages derived from a charged human body under a variety of experimental conditions were examined. The frequency bandwidth of the proposed voltage measuring system ranges from DC to 400[㎒]. The ESD voltage waveform is nearly equal to the ESD current waveform and the peak amplitude of ESD current waveform is roughly proportional to the ESD voltage in each experimental conditions. A rapid approach results in a discharge voltage with a faster initial rise time than for a slow approach. The voltages caused by direct finger ESDs have an initial slope with a relatively long, 10∼30[ns] rise time, but the amplitude is small. On the other hand, the voltages caused by direct hand/metal ESDs have a steep initial s1ope with 1 ∼3[ns] rise time, but an initial spike is very big. As a consequence, it was found that the ESD voltage and current waveforms strongly depend on the approach speed and material of intruder. These measurement results would be useful to design the ESD protective devices.

Studies on the Pull-up MEMS Switch for the Lower Actuation Voltage and High Speed using Double Electrode

  • Lee, Seong-Dae;Jun, Byoung-Chol;Baek, Tae-Jong;Kim, Soom-Koo;Kim, Sam-Dong;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.929-932
    • /
    • 2005
  • We report a pull-up type RF MEMS switch using double electrode without elastic deformation of the cantilever involved in the actuation. At a voltage of 4.5 V, reliable actuations are achieved such that the movable lower contact pad is pulled up by the electrostatic force to make contact with the upper pad. At a frequency of 50 GHz, an insertion loss of 0.7 dB and an isolation of 50.7 dB are obtained from the switch. The measured transient times for switch-on and switch-off are 120 and 80 us, respectively.

  • PDF