• Title/Summary/Keyword: Electrostatic Frequency

Search Result 129, Processing Time 0.022 seconds

A Study on the Fabrication and Characterization of Micromirrors Supported by S-shape Girders (S자형 들보에 의해 지지되는 micromirror의 제작 및 동작특성 분석)

  • Kim, Jong-Guk;Kim, Ho-Seong;Sin, Hyeong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.11
    • /
    • pp.748-754
    • /
    • 1999
  • Micromirrors supported by S-shape girders were fabricated and their angular deflections were measured using a laser-based system. A micromirror consists of a $50\mum\times50\mum$ aluminum plate, posts and an S-shape girder. Two electrodes were deposited on two corners of the substrate beneath the mirror plate. $50\times50$micromirror array were fabricated using the Al-MEMS process. The electrostatic force caused by the voltage difference between the mirror plate and one of the electrodes causes the mirror plate to tilt until the girder touches the substrate. Bial voltage of the mirror plate is between 25~35V and signal pulse voltage on both electrodes is $\pm5V$. A laser-based system capable of real-time two-dimensional angular deflection measurement of the micromirror was developed. The operation of the system is based on measuring the displacement of a HeNe laser beam reflecting off the micromirror. The resonant frequency of the micromirror is 50kHz when the girder touches the substrate and it is 25 when the micromirror goes back to flat position, since the moving mass is about twice of the former case. The measurement results also revealed that the micromirror slants to the other direction even after the girder touches the substrate.

  • PDF

ESP by using Half-bridge ZCS resonant inverter and Cockroft-Walton circuit (Half-Bridge ZCS resonant inverter 및 Cockroft-Walton회로를 사용한 공기 청정기에 관한 연구)

  • Park, Jong-Woong;Jeong, Jong-Jin;Chung, Hyun-Ju;Joung, Jong-Han;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1951-1953
    • /
    • 2004
  • In this study, we propose a small high voltage power supply which use a half-bridge ZCS resonant and Cockroft-Walton on circuit, for ESP (Electrostatic Precipitator). This power supply transfers energy from ZCS resonant inverter to step-up transformer and the transformer secondary is applied to the Cockroft-Walton circuit for generating high voltage as discharging source of electrodes. It is highly efficient because its amount of switching losses are reduced by virtue of the current resonant half-bridge inverter, and also due to the small size, low parasitic capacitance in the transformer stage owing to the low number of winding turns of the step up transformer secondary combined with the Cockroft-Walton circuit. From these results, the best operational condition is obtained at the switching frequency of 9 kHz and the duty ratio of 50 % in this ESP.

  • PDF

design and Resonant Characteristics Analysis of a Vibrating Angular Rate Senser of Microstructure (진동형 미세구조 각속도 센서의 공진 특성 해석 및 설계)

  • 홍윤식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.156-160
    • /
    • 1996
  • A vibrating angular rate sensor with tuning fork type resonator of microstructure (940*820 .mu. m$^{2}$) was designed and will be fabricated by polysilicon surface micromaching. The angular rate sensor is driven in a lateral direction by electrostatic force of comb drive electrodes, and vertical vibrations of the sensor, thich is detected capacitively, are produced by Coriolis forces due to an external angular rate. Mechanical Q factors and a difference between the frequencies of the two resonant modes, the driving mode and detecting mode, play a great role in increasing the sensitivity of the sensor. To be a highly sensitive sensor, it was designed to have as small frequency discrepancy of the two resonant modes as possible. Finite element method was used for the modal analysis. Several design parameters were selected and their contributions to the modal frequencies were investigated. A method was presented for tuning the detecting mode frequency by DC bias on the drive electrodes.

  • PDF

Bender-type Multilayer Piezoelectric Devices for Energy Harvesting (미소에너지 하베스팅용 적층 벤더 압전 소자 성능 연구)

  • Jeong, Soon-Jong;Kim, Min-Soo;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.193-193
    • /
    • 2008
  • Wearable and ubiquitous micro systems will be greatly growing and their related devices should be self-powered in order to avoid the replacement of finite power sources, for example, by scavenging energy from the environment. With ever reducing power requirements of both analog and digital circuits, power scavenging approaches are becoming increasingly realistic. One approach is to drive an electromechanical converter from ambient motion or vibration. Vibration-driven generators based on electromagnetic, electrostatic and piezoelectric technologies have been demonstrated. Among various generator types proposed so far, piezoelectric generator possesses considerable potential in micro system. To overcome low mechanical-to-electric energy conversion, the piezoelectric device should activate in resonance mode in response to external vibration. Normally, the external vibration excretes at low frequency ranging 0.1 to 200 Hz, whereas the resonant frequencies of the devices are fixed as constant. Therefore, keeping their resonant mode in varying external vibration can be one of important points in enhancing the conversion efficiency. We investigated the possibility of use of multi-bender type piezoelectric devices. To match the external vibration frequency with the device resonant frequency, the various devices with different resonant frequency were chosen.

  • PDF

Dielectric Properties of Complex Cconcentration in IMI-0 Thin Films (IMI-O 초박막의 착체농도에 대한 유전 특성)

  • 정상범;유승엽;박재철;권영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.345-348
    • /
    • 1999
  • The monolayer behaviors at the air-water interface and the dielectric properties of MI-0 LB films for complex concentration were investigated by the surface pressure-area ($\pi$-A) isotherms and dielectric constant. The molecular area was expanded with increase of metal ions concentration. It is considered that the expansion of molecular area is due to electrostatic repulsion between the polymer chains andhydrophobic increase of ionic strength. In the frequency-dependent complex dielectric constant at room temperature, the real part of dielectric constant($\varepsilon'$) is about 6.0~10.0 in the low-frequency range and is decreasing slowly upto $1O^4$Hz. It decreased abruptly near $1O^5Hz$. It seems to be dielectric dispersion in this frequency range. Also, the imaginary part of dielectric constant ($\varepsilon"$) shows a peak in $1O^5$~$1O^6Hz$. It seems to be dielectric absorption in this frequency range.ange.

  • PDF

A Basic Study on Miniature Size Electrostatic Induction Meter (소형(小型) 정전(靜電) 유도형(誘導型) 모터의 기초(基礎) 연구(硏究))

  • Moon, Jae-Duk;Lee, Dong-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.65-74
    • /
    • 1993
  • A miniature size electrostatic induction motor has been fabricated and studied with emphasis on the role of the surface resistivity, the relative dielectric constant and the charge relaxation time constant of the rotor surface materials and the rotor liner materials, which, however, control the surface charge induction and relaxation on the rotor material surface and the field intensity between the rotor and the stator of the motor. It is found that the surface resistivity and/or the relative dielectric constant, and the charge relaxation time constant of the rotor surface material enfluenced significantly to motor speed controlled by the surface charge induction and relaxation on the rotor surface depending on the applied voltage and/or frequency changing. The resistivity of the rotor liner material is also found to be effected to the motor speed greatly by control of the field intensity between the rotor and the stator and of the surface charge distribution of the induced charge on the rotor. As a result, a maximum no load rotor speed of the motor tested was about 5500 rpm at the applied voltage of 4.5 kV and the frequency of 220 Hz for the case of the rotor surface material of $BaTiO_{3}$ 80% in the resin binder layered on the copper-foil rotor liner material.

  • PDF

Performance Optimization Study of FinFETs Considering Parasitic Capacitance and Resistance

  • An, TaeYoon;Choe, KyeongKeun;Kwon, Kee-Won;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.525-536
    • /
    • 2014
  • Recently, the first generation of mass production of FinFET-based microprocessors has begun, and scaling of FinFET transistors is ongoing. Traditional capacitance and resistance models cannot be applied to nonplanar-gate transistors like FinFETs. Although scaling of nanoscale FinFETs may alleviate electrostatic limitations, parasitic capacitances and resistances increase owing to the increasing proximity of the source/drain (S/D) region and metal contact. In this paper, we develop analytical models of parasitic components of FinFETs that employ the raised source/drain structure and metal contact. The accuracy of the proposed model is verified with the results of a 3-D field solver, Raphael. We also investigate the effects of layout changes on the parasitic components and the current-gain cutoff frequency ($f_T$). The optimal FinFET layout design for RF performance is predicted using the proposed analytical models. The proposed analytical model can be implemented as a compact model for accurate circuit simulations.

Potational Viscous Damping of On-substrate Micromirrors (기판에 인접한 미소거울의 회전 점성감쇠)

  • Kim, Eung-Sam;Han, Ki-Ho;Cho, Young-Ho;Kim, Moon-Uhn
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.243-248
    • /
    • 2001
  • In this paper, we present theoretical and experimental study on the viscous damping of the on-substrate torsional micromirrors, oscillating near the silicon substrates. In this theoretical study, we develop theoretical models and test structures for the viscous damping of the on-substrate torsional micromirrors. From a finite element analysis, we estimate the theoretical damping coefficients of the torsional micromirrors. From a finite element analysis, we estimate the theoretical damping coefficients of the torsional micromirrors, fabricated by the surface-micromaching process. From the electrostatic test of the fabricated devices, frequency-dependent rotationalvelocity of the micromirrors has been measured at the atmospheric pressure using devices, frequency-dependent rotational velocity of the micromirrors has been measured at the atmospheric pressure using the Mach-Zehnder interferometer system. Experimental damping coefficients have been extracted from the least square fit of the measured rotational velocity within the filter bandwidth of 150 kHz. We have compared the theoretical values and the experimental results on the dynamic performance of the micromirrors. The theoretical analysis overstimates the resonant frequency in the amount of 15%, while underestimating the viscous damping in the factors of 10%.

  • PDF

Comparative Experimental Study on the Evaluation of the Unit-water Content of Mortar According to the Structure of the Deep Learning Model (딥러닝 모델 구조에 따른 모르타르의 단위수량 평가에 대한 비교 실험 연구)

  • Cho, Yang-Je;Yu, Seung-Hwan;Yang, Hyun-Min;Yoon, Jong-Wan;Park, Tae-Joon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.8-9
    • /
    • 2021
  • The unit-water content of concrete is one of the important factors in determining the quality of concrete and is directly related to the durability of the construction structure, and the current method of measuring the unit-water content of concrete is applied by the Air Meta Act and the Electrostatic Capacity Act. However, there are complex and time-consuming problems with measurement methods. Therefore, high frequency moisture sensor was used for quick and high measurement, and unit-water content of mortar was evaluated through machine running and deep running based on measurement big data. The multi-input deep learning model is as accurate as 24.25% higher than the OLS linear regression model, which shows that deep learning can more effectively identify the nonlinear relationship between high-frequency moisture sensor data and unit quantity than linear regression.

  • PDF

Electrostatically-Driven Polysilicon Probe Array with High-Aspect-Ratio Tip for an Application to Probe-Based Data Storage (초소형 고밀도 정보저장장치를 위한 고종횡비의 팁을 갖는 정전 구동형 폴리 실리콘 프로브 어레이 개발)

  • Jeon Jong-Up;Lee Chang-Soo;Choi Jae-Joon;Min Dong-Ki;Jeon Dong-Ryeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.166-173
    • /
    • 2006
  • In this study, a probe array has been developed for use in a data storage device that is based on scanning probe microscope (SPM) and MEMS technology. When recording data bits by poling the PZT thin layer and reading them by sensing its piezoresponse, commercial probes of which the tip heights are typically shorter than $3{\mu}m$ raise a problem due to the electrostatic forces occurring between the probe body and the bottom electrode of a medium. In order to reduce this undesirable effect, a poly-silicon probe with a high aspect-ratio tip was fabricated using a molding technique. Poly-silicon probes fabricated by the molding technique have several features. The tip can be protected during the subsequent fabrication processes and have a high aspect ratio. The tip radius can be as small as 15 nm because sharpening oxidation process is allowed. To drive the probe, electrostatic actuation mechanism was employed since the fabrication process and driving/sensing circuit is very simple. The natural frequency and DC sensitivity of a fabricated probe were measured to be 18.75 kHz and 16.7 nm/V, respectively. The step response characteristic was investigated as well. Overshoot behavior in the probe movement was hardly observed because of large squeeze film air damping forces. Therefore, the probe fabricated in this study is considered to be very useful in probe-based data storages since it can stably approach toward the medium and be more robust against external shock.