• 제목/요약/키워드: Electrospray ionization mass spectrometry (ESI-MS)

검색결과 155건 처리시간 0.038초

Determination of Enalapril in Human Plasma by High Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry

  • Yoon, Kyung-Hwan;Kim, Won;Park, Jong-Sei;Kim, Hie-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권6호
    • /
    • pp.878-880
    • /
    • 2004
  • Revered-phase LC-electrospray ionization mass spectrometry was used to selectively determine enalapril from plasma with minimal sample preparation. Detection limit of the method was 1 ng/mL. Precision (within day and between days) and accuracy of the method at various concentrations were acceptable. The analytical technique was used for pharmacokinetic studies after administration of enalapril to human test subjects.

The Influence of Mixed Solvents Volatility on Charge State Distribution of Peptides During Positive Electrospray Ionization Mass Spectrometry

  • Nielsen, Birthe V.;Abaye, Daniel A.;Nguyen, Minh T.L.
    • Mass Spectrometry Letters
    • /
    • 제8권2호
    • /
    • pp.29-33
    • /
    • 2017
  • Understanding the mechanisms that control and concentrate the observed electrospray ionisation (ESI) response from peptides is important. Controlling these mechanisms can improve signal-to-noise ratio in the mass spectrum, and enhances the generation of intact ions, and thus, improves the detection of peptides when analysing mixtures. The effects of different mixtures of aqueous: organic solvents (25, 50, 75%; v/v): formic acid solution (at pH 3.26) compositions on the ESI response and charge-state distribution (CSD) during mass spectrometry (MS) were determined in a group of biologically active peptides (molecular wt range 1.3 - 3.3 kDa). The ESI response is dependent on type of organic solvent in the mobile phase mixture and therefore, solvent choice affects optimal ion intensities. As expected, intact peptide ions gave a more intense ESI signal in polar protic solvent mixtures than in the low polarity solvent. However, for four out of the five analysed peptides, neither the ESI response nor the CSD were affected by the volatility of the solvent mixture. Therefore, in solvent mixtures, as the composition changes during the evaporation processes, the $pK_b$ of the amino acid composition is a better predictor of multiple charging of the peptides.

Application of Malononitrile Derivatization Method for Structural Glycomics Study in Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry

  • Ahn, Yeong-Hee;Yoo, Jong-Shin
    • Journal of Photoscience
    • /
    • 제8권2호
    • /
    • pp.83-86
    • /
    • 2001
  • Structural analyses of oligosaccharide-malononitrile derivatives were conducted by matrix-assisted laser desorption/ionization post-source decay (MALDI-PSD) analysis in positive ion mode. The malononitrile derivatives of oligosaccharides, which were developed for highly sensitive detection of multi-component oligosaccharides by negative ion electrospray ionization mass spectrometry (ESI MS), were detected by positive-ion MALDI with the detection limit of 2 pmol level from the crude derivatization sample. The used matrix affected drastically the analytical results of oligosaccharide-malononitrile derivative by matrix-assisted laser desoprtion/ionization mass spectrometry (MALDI MS). The malononitrile derivatization of oligosaccharide also affect the patterns of MALDI-PSD spectra and give much more structural information than the free oligosaccharide.

  • PDF

Structural Analysis of [Cu(II)-amyloidogenic peptide] Complexes

  • Cha, Eugene;Seo, Jae-Hong;Kim, Ho-Tae
    • Mass Spectrometry Letters
    • /
    • 제9권1호
    • /
    • pp.17-23
    • /
    • 2018
  • Studies on the interactions of amyloidogenic proteins with trace metals, such as copper, have indicated that the metal ions perform a critical function in the early oligomerization process. Herein, we investigate the effects of Cu(II) ions on the active sequence regions of amyloidogenic proteins using electrospray ionization mass spectrometry (ESI-MS) and collision induced dissociation tandem MS (CID-MS/MS). We chose three amyloidogenic peptides NNQQNY, LYQLEN, and VQIVYK from yeast prion like protein Sup35, insulin chain A, and tau protein, respectively. [Cu-peptide] complexes for all three peptides were observed in the mass spectra. The mass spectra also show that increasing Cu(II) concentrations decrease the population of existing peptide oligomers. The tandem mass spectrum of NNQQNY shows preferential binding for the N-terminal region. All three peptides are likely to appear to be in a Cu-monomer-monomer (Cu-M-M) structure instead of a monomer-Cu-monomer (M-Cu-M) structure.

LC-ESI-MS/MS를 이용한 용담사간탕의 주요 성분 분석 (Quantitative Analysis of the Marker Constituents in Yongdamsagan-Tang using Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry)

  • 서창섭;하혜경
    • 생약학회지
    • /
    • 제48권4호
    • /
    • pp.320-328
    • /
    • 2017
  • Yongdamsagan-tang has been used to treat the urinary disorders, acute- and chronic-urethritis, and cystitis in Korea. In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS) method was established for simultaneous analysis of the 20 bioactive marker compounds, geniposidic acid, chlorogenic acid, geniposide, liquiritin apioside, acteoside, calceolarioside B, liquiritin, nodakenin, baicalin, liquiritigenin, wogonoside, baicalein, glycyrrhizin, wogonin, glycyrrhizin, wogonin, saikosaponin A, decursin, decursinol angelate, alisol B, alisol B acetate, and pachymic acid in traditional herbal formula, Yongdamsagan-tang. Chromatographic separations of all marker compounds were conducted using a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient elution. The MS analysis was performed using a Waters ACQUITY TQD LC-MS/MS coupled with an electrospray ionization source in the positive and negative modes. The flow rate was 0.3 mL/min and injection volume was $2.0{\mu}L$. The correlation coefficient of 20 marker compounds in the test ranges was 0.9943-1.0000. The limits of detection and quantification values of the all marker components were 0.11-6.66 and 0.34-19.99 ng/mL, respectively. As a result of the analysis using the optimized LC-ESI-MS/MS method, three compounds, geniposidic acid (from Plantaginis Semen), alisol B (from Alismatis Rhizoma), and pachymic acid (from Poria Sclerotium), were not detected in this sample. While the amounts of the 17 compounds except for the geniposidic acid, alisol B, and pachymic acid were $0.04-548.13{\mu}g/g$ in Yongdamsagan-tang sample. Among these compounds, baicalin, bioactive marker compound of Scutellariae Radix, was detected at the highest amount as a $548.13{\mu}g/g$.

Comparative Proteomic Analysis of Human Amniotic Fluid Supernatants with Down Syndrome Using Mass Spectrometry

  • Park, Ji-Sook;Cha, Dong-Hyun;Jung, Jin-Woo;Kim, Young-Hwan;Lee, Sook-Hwan;Kim, Young-Jun;Kim, Kwang-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권6호
    • /
    • pp.959-967
    • /
    • 2010
  • Down syndrome (DS) is an abnormality of the 21st chromosome that commonly occurs in children born to older women. Thus, amniotic fluid (AF) is usually collected from such women for prenatal diagnosis. This study analyzed human AF supernatants (AFS) using a mass spectrometric (MS) approach to search for candidate biomarkers of a DS pregnancy. The AFS were collected from older pregnant women at weeks 16-18 of their gestation by amniocentesis for cytogenetic analysis. The AFS from the pregnancies carrying DS (n=4) or chromosomally normal (n=6) fetuses, as revealed by the cytogenetic analysis, were then subjected to global protein profiling based on liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Affinity chromatography was also applied prior to the LC-ESI-MS/MS to minimize the masking effect of highly abundant albumin and immunoglobulin and thereby increase the diversity of the identified proteins. As a result, at least 30 new AFS proteins were identified and 44 AFS proteins were found to be differentially expressed between the DS and normal cases, where 6 of the proteins were unique to the DS cases and 11 were unique to the chromosomally normal cases. In addition, in the DS cases, 19 AFS proteins were downregulated and 8 were upregulated to varying degrees. A Western blot analysis confirmed the LC-ESI-MS/MS data, indicating that the combined detection of apolipoprotein A-II (apoA-II) and alpha-fetoprotein (AFP) could be a potential tool for diagnosing DS cases.

Discovery to Human Disease Research: Proteo-Metabolomics Analysis

  • Minjoong Joo;Jeong-Hun Mok;Van-An Duong;Jong-Moon Park;Hookeun Lee
    • Mass Spectrometry Letters
    • /
    • 제15권2호
    • /
    • pp.69 -78
    • /
    • 2024
  • The advancement of high-throughput omics technologies and systems biology is essential for understanding complex biological mechanisms and diseases. The integration of proteomics and metabolomics provides comprehensive insights into cellular functions and disease pathology, driven by developments in mass spectrometry (MS) technologies, including electrospray ionization (ESI). These advancements are crucial for interpreting biological systems effectively. However, integrating these technologies poses challenges. Compared to genomic, proteomics and metabolomics have limitations in throughput, and data integration. This review examines developments in MS equipped electrospray ionization (ESI), and their importance in the effective interpretation of biological mechanisms. The review also discusses developments in sample preparation, such as Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX), analytical techniques, and data analysis, highlighting the application of these technologies in the study of cancer or Huntington's disease, underscoring the potential for personalized medicine and diagnostic accuracy. Efforts by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and integrative data analysis methods such as O2PLS and OnPLS extract statistical similarities between metabolomic and proteomic data. System modeling techniques that mathematically explain and predict system responses are also covered. This practical application also shows significant improvements in cancer research, diagnostic accuracy and therapeutic targeting for diseases like pancreatic ductal adenocarcinoma, non-small cell lung cancer, and Huntington's disease. These approaches enable researchers to develop standardized protocols, and interoperable software and databases, expanding multi-omics research application in clinical practice.

UPLC-ESI-MS/MS를 이용한 온경탕 중 25종 성분의 함량분석 (Quantification of the 25 Components in Onkyung-Tang by Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry)

  • 서창섭;신현규
    • 생약학회지
    • /
    • 제47권1호
    • /
    • pp.92-101
    • /
    • 2016
  • In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS) method was established for simultaneous determination of the 25 marker components, including chlorogenic acid, gallic acid, oxypaeoniflorin, homogentisic acid, methyl gallate, caffeic acid, 3,4-dihydroxybenzaldehyde, paeoniflorin, albiflorin, liquiritin, nodakenin, ferulic acid, ginsenoside Rg1, liquiritigenin, coumarin, cinnamic acid, benzoylpaeoniflorin, ginsenoside Rb1, cinnamaldehyde, paeonol, glycyrrhizin, 6-gingerol, evodiamine, rutecarpine, and spicatoside A in traditional Korean formula, Onkyung-tang. All analytes were separated on a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient elution. The MS analysis was carried out using a Waters ACQUITY TQD LC-MS/MS coupled with an electrospray ionization (ESI) source in the positive and negative modes. The flow rate and injection volume were 0.3 mL/min and $2.0{\mu}L$, respectively. The correlation coefficient of all analytes in the test ranges was greater than 0.98. The limits of detection and quantification values of the 25 marker compounds were in the ranges 0.03-19.43 and 0.09-58.29 ng/mL, respectively. As a result, methyl gallate, 3,4-dihydroxybenzaldehyde, evodiamine, and rutecarpine were not detected in this sample and the concentrations of the 21 compounds except for the above 4 compounds were $33.09-3,496.32{\mu}g/g$ in Onkyung-tang decoction. Among these compounds, paeonol was detected at the highest amount as a $3,496.32{\mu}g/g$.