• 제목/요약/키워드: Electrorheological Fluid

Search Result 95, Processing Time 0.022 seconds

Vibration Control of Beam Containing ER Fluid Using PPF Control Scheme (PPF 제어기법을 적용한 전기점성유체가 함유된 보의 진동제어)

  • Yun Shin-Il;Chin Do-Hun;Yoon Moon-Chul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.32-37
    • /
    • 2005
  • Several types of smart materials and control scheme are available to adjust the structure actively in various external disturbances. A control scheme was introduced for a specific material. But the effectiveness of the control scheme has some limitation according to the choice of the smart materials and the response of the structure. The ER(Electrorheological) fluid is adequate for a large control force, and the PZT(lead zirconate titanate) patches are suitable for small but arbitrary control force at any point of the structure. It can be used for active control of structure by changing the dynamic characteristics of the structure. But it has some difficulty in suppressing the excited vibration in broad band. To compensate this resonance of the controlled structure, a hybrid controller was constructed using PPF(Positive position feedback) control with PZT and ER fluid control.

Electrorheological Performance of Chitosan Sebacicate Suspension as an Anhydrous ER Fluid

  • Choi, Ung Su;Ko, Young Gun;Jee, Han Soon;Lee, Sang Shun
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.71-74
    • /
    • 2001
  • The electrorheological(ER) performance of a chitosan sebaciate suspension in silicone oil was investigated by varying the electric fields, volume fractions of particles, and shear rates, respectively. The chitosan sebacicate susepnsion showed a typical ER response caused by the polarizability of an amide polar group and shear yield stress due to the formation of multiple chains upon application of an electric field. The shear stress for the suspension exhibited a linear dependence on the volume fraction of particles and an electric field power of 1.88. On the basis of the results, the newly synthesized chitosan sebacicate suspension was found to be an anhydrous ER fluid.

  • PDF

A Study on Bingham Characteristics of Particle Dispersive Electro-Rheological Fluid (입자분산계 ER유체의 빙햄특성 고찰)

  • 장성철;이선의;김태형;박종근;염만오
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.178-183
    • /
    • 2000
  • Electrorheological(ER) effect on the dispersive system of polarizable fine powder/dielectric oil has been investigated. The electrical and rheological properties of zeolite and starch based ER fluid were reported. The ER fluids were constructed by mixing zeolite and starch power with two different dielectric oils. Yield stress of the fluids were measured on the couette cell type rheometer as a function of electric fields, particle concetrations, and temperatures. The electric field is applied by high voltage DC power supply. The outer cup is connected to positive electrode(+) and the bob becomes ground(-). And the temperatures the viscosity(or shear stress) versus shear rates were measured. In this experiment shear rates were increased from 0 to $200s^{-1}$ in 2 minutes.

  • PDF

Electrorheological Properties of Aminated Polyacrylonitrile Susupension (아민화 폴리아크로니트릴 유도체 현탁액의 전기유변학적 특성)

  • Choi, Ung-Su;Kim, Choong-Hyun
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.176-181
    • /
    • 2009
  • Aminated polyacrylonitrile as the new organic disperse phases of the anhydrous ER fluid has been synthesized and ER effect of the suspension composed of aminated polyacrylonitrile in silicone oil investigated. The suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the suspension exhibited the dependence with a factor equals to 1.6 power on theelectric field. The current density and the conductivity of the of aminated polyacrylonitrile suspension increase with the electric field intensity and moreover the conductivity of the suspension is about 8 order of magnitude higher than that of the silicone oil. On the basis of the the results, aminated polyacrylonitrile suspension showed the ER flow behavior upon application of the electric field due to the polarizability of the branched amine polar group of the aminated polyacrylonitrile particles.

Viscoelastic properties of electrorheological fluids (전기유변유체의 점탄성 특성에 관한연구)

  • Choe, Yun-Dae;Kim, Sang-Guk
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.220-227
    • /
    • 1992
  • Electrorheological(ER) fluid's storage shear modulus(G') and loss factor(${\eta}$) have been directly measured using small amplitude forced oscillating rheometer as a function of oscillating frequency, strain amplitude and applied electric field. Two types of experiment were performed , (a) frequency sweep and (b) amplitude sweep. Two kinds of sample were employed for this experiment ; cornstarch particles in corn oil and zeolite particles in silicone oil. The storage shear modulus was a strong function of driving frequency. Generally, the modulus increased with driving frequency. On the other hand, the loss factor was not well behaved as storage modulus, but as the driving frequency increases the loss factor slightly decreases was the trend of the material's characteristics. Also the modulus was a strong function of strain amplitude. Generally, modulus decreased with increasing strain, but loss factor increases slightly with increasing strain amplitude. For G', cornstarch in corn oil ER fluid has higher values than zeolite based fluid as we increased applied electric field. On the other hand, zeolite based fluid has higher values for ${\eta}$. There is a reasonable agreement between theoretical calculation and experiment.

  • PDF

Scaling analysis of electrorheological poly(naphthalene quinone) radical suspensions

  • Min S. Cho;Park, Hyoung J.
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.3_4
    • /
    • pp.151-155
    • /
    • 2000
  • A semiconducting poly(naphthalene quinone) radical (PNQR) was synthesized from Friedel-Craft acylation between naphthalene and phthalic anhydride and used as dispersing particles of a dry-base electrorheological (ER) material in silicone oil. Under an applied electric field (E), the dynamic yield stress (${\tau}_{dyn}$) of this ER fluid, obtained from a steady shear experiment with a controlled shear rate mode, was observed to increase with $E^{1.45}$ Based on this relationship, we propose a universal correlation curve for shear viscosity, which is independent of E using a scaling analysis.

  • PDF

Axisymmetric dynamic instability of polar orthotropic sandwich annular plate with ER damping treatment

  • Yeh, Jia-Yi
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.25-39
    • /
    • 2014
  • The axisymmetric dynamic instability of polar orthotropic sandwich annular plate combined with electrorheological (ER) fluid core layer and constraining layer are studied in this paper. And, the ER core layer and constraining layer are used to improve the stability of the annular plate system. The boundaries of instability regions for the polar orthotropic sandwich annular plate system are obtained by discrete layer annular finite element and the harmonic balance method. The rheological property of an electrorheological material, such as viscosity, plasticity, and elasticity can be controlled by applying different electric field strength. Thus, the damping characteristics of the sandwich system are more effective when the electric field is applied on the sandwich structure. Additionally, variations of the instability regions for the polar orthotropic sandwich annular plate with different applying electric field strength, thickness of ER layer and some designed parameters are investigated and discussed in this study.

Dynamic simulation of squeezing flow of ER fluids using parallel processing

  • Kim, Do-Hoon;Chu, Sang-Hyon;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.233-240
    • /
    • 1999
  • In order to understand the flow behavior of Electrorheological (ER) fluid, dynamic simulation has been intensively performed for the last decade. When the shear flow is applied, it is easy to carry out the simulation with relatively small number of particles because of the periodic boundary condition. For the squeezing flow, however, it is not easy to apply the periodic boundary condition, and the number of particles needs to be increased to simulate the ER system more realistically. For this reason, the simulation of ER fluid under squeezing flow has been mostly performed with some representative chains or with the approximation that severely restricts the flow geometry to reduce the computational load. In this study, Message Passing Interface (MPI), which is one of the most widely-used parallel processing techniques, has been employed in a dynamic simulation of ER fluid under squeezing flow. As the number of particles used in the simulation could be increased significantly, full domain between the electrodes has been covered. The numerical treatment or the approximation used to reduce the computational load has been evaluated for its validity, and was found to be quite effective. As the number of particles is increased, the fluctuation of the normal stress becomes diminished and the prediction in general was found to be qualitatively In good agreement with the experimental results.

  • PDF

Maneuver Analysis of Full-vehicle Featuring Electrorheological Suspension and Electrorheological Brake (ER 현가장치 및 ER 브레이크를 적용한 전체차량의 거동분석)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.464-471
    • /
    • 2007
  • This paper presents a maneuver analysis of a full-vehicle featuring electrorheological(ER) suspension and ER brake. In order to achieve this goal, an ER damper and an ER valve pressure modulator are devised to construct ER suspension and ER brake systems, respectively. After formulating the governing equations of the ER damper and ER valve pressure modulator, they are designed and manufactured for a middle-sized passenger vehicle, and their field-dependent characteristics are experimentally evaluated. The governing equation of motion for the full-vehicle is then established and integrated with the governing equations of the ER suspension and ER brake. Subsequently, a sky-hook controller for the ER suspension and a sliding mode controller for the ER brake are formulated and implemented. Control performances such as vertical displacement and braking distance of vehicle are evaluated under various driving conditions through computer simulations.

Electrorheological Properties of Water Activated Silica Gel Suspensions (수분 활성 실리카 겔 분산계의 전기유변학적 특성)

  • 안병길;최웅수;권오관;문탁진
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.115-123
    • /
    • 1997
  • The electrorheological (ER) behavior of suspensions in silicone oil of silica gel powder (average particle size 49 $\mu$m) absorbed water was investigated at room temperature with electric fields up to 2.4 KV/mm. In this paper, for development of succcessful ER fluids used for wide temperature range later, we would like to know a fundamental understanding of water on ER effect. As a first step, the ER fluids involving water activated silica gel were measured not only the electrical characteristics such as dielectric constant, current density and electrical conductivity but also the rheological properties on the strength of electric field, the quantity of dispersed phase and absorbed water. From the experimental results that water absorbed to the particles directly affects to the surface charge density of electric double layer model proposed by Schwarz and makes dielectric constant and current density of ER fluids increase. The current density and dynamic yield stress $($\tau$_y)$ of water activated silica gel suspensions was in exponential proportion to the strength of electric field, the quantity of dispersed phase and absorbed water. And the optimum water quantity and weight concentration of silica gel for electrorheological effect were 4-5 wt% and 15 wt%, respectively.