Browse > Article
http://dx.doi.org/10.9725/kstle.2009.25.3.176

Electrorheological Properties of Aminated Polyacrylonitrile Susupension  

Choi, Ung-Su (Energymechanics Center, Korea Institute of Science and Technology)
Kim, Choong-Hyun (Energymechanics Center, Korea Institute of Science and Technology)
Publication Information
Tribology and Lubricants / v.25, no.3, 2009 , pp. 176-181 More about this Journal
Abstract
Aminated polyacrylonitrile as the new organic disperse phases of the anhydrous ER fluid has been synthesized and ER effect of the suspension composed of aminated polyacrylonitrile in silicone oil investigated. The suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the suspension exhibited the dependence with a factor equals to 1.6 power on theelectric field. The current density and the conductivity of the of aminated polyacrylonitrile suspension increase with the electric field intensity and moreover the conductivity of the suspension is about 8 order of magnitude higher than that of the silicone oil. On the basis of the the results, aminated polyacrylonitrile suspension showed the ER flow behavior upon application of the electric field due to the polarizability of the branched amine polar group of the aminated polyacrylonitrile particles.
Keywords
electrorheological(ER) fluid; aminated pan derivative; polarization model; Bingham fluid; single chain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Weiss, K. D. and Carlson, J. D., 'Material Aspect of Electrorheological Systems', J. Intell. Sys. and Struc. Vol. 4, pp. 13-34, 1993   DOI
2 Block, H. and Kelly, J. P., 'Electro-rheology', J. Phys. D: Appl. Phys., Vol. 21, pp. 1661-1677, 1988   DOI   ScienceOn
3 Gow, C. J. and Zukoski, C. F., 'The Electrorheological Properties of Polyaniline Suspension', J. Colloid Interface Sci., Vol. 136, pp. 175-188, 1990   DOI   ScienceOn
4 R. Bloodworth and E. Wend, ' Electrorheological Effect of Polyurethan Suspension', Progress in Electrorheology edited by K. O. Havelko and F. E. Filisko, pp. 185-192, Plenum Press, New York, 1995
5 Choi, U. S., Woo. J. W. and Park, Y. S., 'Electrorheological Effect of Chitosan salts as the Dispersed Phases', J. Chitin Chitosan, Vol. 11 , pp. 139-142, 2006
6 Uejima, H., 'Dielectric Mechamism and Rheological Properties of Electrofluids', Jpn. J. Appl. Phys., Vol. 11, pp. 319-326, 1972   DOI
7 Li, Y., Chen, Y. and Conrad, H., 'Development in Electrorheological Flows: Effect of Strain Rate in the Quas-Static Regime on the Strength of Electrorheological Fluids', ASME, Vol. 235, pp 29-36, 1995
8 Chen, Y., Sprecher, A. F. and Comad, H., 'The Strength of Electrorheological Fluids', J. of Modrn. Phys. B, Vol. 16, pp. 2575-2583, 1991
9 Klingenberg D. J. and Zukoski, C. F., 'Studies on the Steady Shear Stress Behavior of Electrorheological Suspension', Langmuir, Vol. 6, pp. 15-24, 1990   DOI
10 Block, H. and Kelly, J. P., 'Materials and Mechanism in Electrorheology', Langumir, Vol. 6, pp 6-14, 1990   DOI
11 Winslow, W. M., 'Induced Fibration of Suspension', J. of Physics., Vol. 20, pp. 1137-1140, 1949
12 Gast, A. P. and Zukoski, C. F., 'Electrorheological Fluids as Colloidal Suspension', Adv. Colloid Interface Sci., Vol. 30, pp. 153-170, 1989   DOI   ScienceOn
13 Halsey, T. C. and Toor, W., 'Stmcture of Electrorheological Fluids', Phys. Rev. Lett. Vol. 65, pp. 2820-2823, 1990   DOI   ScienceOn
14 Shulman, Z. P., Gorodkin, R. C. and Koroboko, Z. V., ' Electrorheological Effect and Its Possible Uses', J. Non-Newt. Fluid Mech., Vol. 8, pp. 29-41, 1981   DOI   ScienceOn
15 H. Conrad and Y. Chen, 'Electrical Properties and the Strength of Electrorheological Fluids', edited by K. O. Havelka and F. E. Filisko, pp. 55-60, Pleunum Press, New York, 1995