DOI QR코드

DOI QR Code

Electrorheological Properties of Aminated Polyacrylonitrile Susupension

아민화 폴리아크로니트릴 유도체 현탁액의 전기유변학적 특성

  • Choi, Ung-Su (Energymechanics Center, Korea Institute of Science and Technology) ;
  • Kim, Choong-Hyun (Energymechanics Center, Korea Institute of Science and Technology)
  • 최웅수 (한국과학기술연구원 에너지메카닉스센터) ;
  • 김충현 (한국과학기술연구원 에너지메카닉스센터)
  • Published : 2009.06.30

Abstract

Aminated polyacrylonitrile as the new organic disperse phases of the anhydrous ER fluid has been synthesized and ER effect of the suspension composed of aminated polyacrylonitrile in silicone oil investigated. The suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the suspension exhibited the dependence with a factor equals to 1.6 power on theelectric field. The current density and the conductivity of the of aminated polyacrylonitrile suspension increase with the electric field intensity and moreover the conductivity of the suspension is about 8 order of magnitude higher than that of the silicone oil. On the basis of the the results, aminated polyacrylonitrile suspension showed the ER flow behavior upon application of the electric field due to the polarizability of the branched amine polar group of the aminated polyacrylonitrile particles.

Keywords

References

  1. Winslow, W. M., 'Induced Fibration of Suspension', J. of Physics., Vol. 20, pp. 1137-1140, 1949
  2. Klingenberg D. J. and Zukoski, C. F., 'Studies on the Steady Shear Stress Behavior of Electrorheological Suspension', Langmuir, Vol. 6, pp. 15-24, 1990 https://doi.org/10.1021/la00091a003
  3. Shulman, Z. P., Gorodkin, R. C. and Koroboko, Z. V., ' Electrorheological Effect and Its Possible Uses', J. Non-Newt. Fluid Mech., Vol. 8, pp. 29-41, 1981 https://doi.org/10.1016/0377-0257(81)80003-1
  4. Weiss, K. D. and Carlson, J. D., 'Material Aspect of Electrorheological Systems', J. Intell. Sys. and Struc. Vol. 4, pp. 13-34, 1993 https://doi.org/10.1177/1045389X9300400103
  5. Block, H. and Kelly, J. P., 'Electro-rheology', J. Phys. D: Appl. Phys., Vol. 21, pp. 1661-1677, 1988 https://doi.org/10.1088/0022-3727/21/12/001
  6. Chen, Y., Sprecher, A. F. and Comad, H., 'The Strength of Electrorheological Fluids', J. of Modrn. Phys. B, Vol. 16, pp. 2575-2583, 1991
  7. Gow, C. J. and Zukoski, C. F., 'The Electrorheological Properties of Polyaniline Suspension', J. Colloid Interface Sci., Vol. 136, pp. 175-188, 1990 https://doi.org/10.1016/0021-9797(90)90088-6
  8. Gast, A. P. and Zukoski, C. F., 'Electrorheological Fluids as Colloidal Suspension', Adv. Colloid Interface Sci., Vol. 30, pp. 153-170, 1989 https://doi.org/10.1016/0001-8686(89)80006-5
  9. Halsey, T. C. and Toor, W., 'Stmcture of Electrorheological Fluids', Phys. Rev. Lett. Vol. 65, pp. 2820-2823, 1990 https://doi.org/10.1103/PhysRevLett.65.2820
  10. Uejima, H., 'Dielectric Mechamism and Rheological Properties of Electrofluids', Jpn. J. Appl. Phys., Vol. 11, pp. 319-326, 1972 https://doi.org/10.1143/JJAP.11.319
  11. Li, Y., Chen, Y. and Conrad, H., 'Development in Electrorheological Flows: Effect of Strain Rate in the Quas-Static Regime on the Strength of Electrorheological Fluids', ASME, Vol. 235, pp 29-36, 1995
  12. Choi, U. S., Woo. J. W. and Park, Y. S., 'Electrorheological Effect of Chitosan salts as the Dispersed Phases', J. Chitin Chitosan, Vol. 11 , pp. 139-142, 2006
  13. Block, H. and Kelly, J. P., 'Materials and Mechanism in Electrorheology', Langumir, Vol. 6, pp 6-14, 1990 https://doi.org/10.1021/la00091a002
  14. R. Bloodworth and E. Wend, ' Electrorheological Effect of Polyurethan Suspension', Progress in Electrorheology edited by K. O. Havelko and F. E. Filisko, pp. 185-192, Plenum Press, New York, 1995
  15. H. Conrad and Y. Chen, 'Electrical Properties and the Strength of Electrorheological Fluids', edited by K. O. Havelka and F. E. Filisko, pp. 55-60, Pleunum Press, New York, 1995