• Title/Summary/Keyword: Electrons loss behavior

Search Result 4, Processing Time 0.018 seconds

Dependence of Electrons Loss Behavior on the Nitride Thickness and Temperature for Charge Trap Flash Memory Applications

  • Tang, Zhenjie;Ma, Dongwei;Jing, Zhang;Jiang, Yunhong;Wang, Guixia;Li, Rong;Yin, Jiang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.245-248
    • /
    • 2014
  • $Pt/Al_2O_3/Si_3N_4/SiO_2/Si$ charge trap flash memory structures with various thicknesses of the $Si_3N_4$ charge trapping layer were fabricated. According to the calculated and measured results, we depicted electron loss in a schematic diagram that illustrates how the trap to band tunneling and thermal excitation affects electrons loss behavior with the change of $Si_3N_4$ thickness, temperature and trap energy levels. As a result, we deduce that $Si_3N_4$ thicknesses of more than 6 or less than 4.3 nm give no contribution to improving memory performance.

Power Enhance Effect on the Hybrid Cell Based on Direct Current Nanogenerator and an Organic Photovoltaic Device

  • Yun, Gyu-Cheol;Sin, Gyeong-Sik;Lee, Geun-Yeong;Lee, Ju-Hyeok;Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.298-298
    • /
    • 2013
  • Finding renewable and clean energy resources is essential research to solve global warming and depletion of fossil fuels in modern society. Recently, complex harvesting of energy from multiple sources is available in our living environments using a single device has become highly desirable, representing a new trend in energy technologies. We report that when simultaneously driving the fusion and composite cells of two or more types, it is possible to make an affect the other cells to obtain a greater synergistic effect. To understand the coupling effect of photovoltaic and piezoelectric device, we fabricate the serially integrated hybrid cell (s-HC) based on organic solar cell (OSC) and piezoelectric nanogenerator (PNG). The size of increased voltage peaks when OSC and PNG are working on is larger than the case when only PNG is working. This voltage difference is the Voc change of OSC, not the voltage change of PNG and current density difference between these two cases is manifested more clearly. When the OSC and PNG are working in s-HC at the same time, piezoelectric potential (VPNG) is generated in ZnO and theoretical total voltage is sum of voltage of an OSC (VOSC) and VPNG. However, electrons from OSC are influenced by piezoelectric potential in ZnO and current loss of OSC in whole circuit decreases. As a result, VOSC increases temporarily. Current shows the similar behavior. PNG acts a resistance in the whole circuit and current loss occurs when the electrons from OSC pass through the PNG. But piezoelectric potential recover current loss and decrease the resistance of PNG. Our PNG can maintain piezoelectric potential when the strain is held owing to the LDH layer while general PNG cannot maintain piezoelectric potential. During the section that strain is held, voltage enhancement effect is maintained and same effect appeared even turn off the light. Actually at this time, electrons in ZnO nanosheets move to LDH and trapped by the positive charges in this layer. After this strain is held, piezoelectric potential of ZnO nanosheets is disappeared but potential difference which is developed by negative charge dominant LDH layer is remained. This potential acts similar role like piezoelectric potential in ZnO. Electrons from the OSC also are influenced by this potential and the more current flows.

  • PDF

Influence of a TiCl4 Treatment Condition on Dye-Sensitized Solar Cells

  • Kim, Jung-Kyu;Shin, Ka-Hee;Lee, Kun-Seok;Park, Jong-Hyeok
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.81-84
    • /
    • 2010
  • In dye-sensitized solar cells (DSSCs), the back transfer of photo-generated electrons from FTO glass to triiodide ions in an electrolyte is an important loss mechanism, which leads to low cell efficiency. Recently, this back electron transfer was greatly suppressed by the introduction of a compact $TiO_2$ blocking layer, which was prepared by the treatment of $TiCl_4$ solution. In the present work, more detailed $TiCl_4$ treated surface conditions on FTO substrate were investigated and DSSC performances were correlated with the surface morphology as well as dark current behavior.

Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.445-449
    • /
    • 2021
  • Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.