• Title/Summary/Keyword: Electronics cooling

Search Result 323, Processing Time 0.022 seconds

Experimental Study on the Two Phase Thermosyphone Loop with Parallel Connected Multiple Evaporators under Partial Load and Low Temperature Operating Condition (병렬 연결된 다중 증발기 구조 2상 유동 순환형 열사이폰의 부분부하 및 저온운전 특성에 관한 실험적 연구)

  • Kang In-Seak;Choi Dong-Kyu;Kim Taig-young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1051-1059
    • /
    • 2004
  • Two phase thermosyphone loop for electronics cooling are designed and manufactured to test its performance under the partial load and low environment temperature conditions. The thermosyphone device has six evaporators connected parallel for the purpose of cooling six power amplifier units (PAU) independently. The heater modules for simulating PAUs are adhered with thermal pad to the evaporator plates to reduce the contact resistance. There are unbalanced distributions of liquid refrigerant in the differently heated evaporators due to the vapor pressure difference. To reduce the vapor pressure differences caused by partial heating, two evaporators are connected each other using the copper tube. The pressure regulation tube successfully reduces these unbalances and it is good candidates for a field distributed systems. Under the low environment temperature operating condition, such as $-30^{\circ}C$, there may be unexpected subcooling in condenser. It leads the very low saturation pressure, and under this condition there exists explosive boiling in evaporator. The abrupt pressure rise due to the explosive boiling inhibits the supplement of liquid refrigerant to the evaporator for continuous cooling. Finally the cooling cycle will be broken. For the normal circulation of refrigerant there may be an optimum cooling air flow rate in condenser to adjust the given heat load.

Performance Characteristics of a CO2 Cooling and Water Heating System with a Twin-rotary Compressor (트윈로터리 압축기 적용 냉방 및 급탕 겸용 이산화탄소 시스템의 성능특성에 관한 연구)

  • Cho, Hong-Hyun;Lee, Ho-Sung;Baek, Chang-Hyun;Kim, Yong-Chan;Cho, Sung-Wook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.230-237
    • /
    • 2008
  • The objective of this paper is to investigate the performance characteristics of a $CO_2$ cooling and water heating system using a twin-rotary compressor with the compression volume ratio of 0.6. The cooling performances of the $CO_2$ heat pump were measured and analyzed with the variations of charge amount, EEV opening, and compressor frequency. In addition, the performance of the combined system including cooling and water heating was also measured and analyzed by varying inlet temperature of the EEV. As a result, the optimal normalized charge and cooling COP in the cooling mode were 0.307 and 2.06, respectively. The application of the water heating into the $CO_2$ heat pump improved the cooling performance over 78% and decreased the EEV inlet temperature by $8^{\circ}C$, which can increase system reliability.

The Core Technical Trends of TESLA EV(Electric Vehicle) Motors (테슬라(TESLA) 전기자동차 핵심 기술동향)

  • Bae, Jin-Yong;Kim, Yong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.414-422
    • /
    • 2017
  • This paper reviews the core technical trends of TESLA EV Motors. The TESLA EV Motors is explosively popular with a considerable recharging infrastructure, a wide 17-[inch] touch display, 417 [HP], and 378 [km] going distance. The object of this study analyzes the body appearance, motor and, battery cooling system, battery arrangement, battery management system, super charging station, power electronics, and induction motor.

The effect of cooling rate on electrical properties of ZnO varistor for Fire Alarm Circuit

  • Lee, Duck-Chool;Kim, Yong-Hyuk;Chu, Soon-Nam
    • Fire Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.3-12
    • /
    • 1996
  • The aim of the present study is to find out the effect of cooling rate on the electrical behavior of ZnO varistors. The microstructure, 1-V characteristics and complex impedance spectra were investigated under the change of cooling rates. It is found that at cooling rate $200^{\circ}$/h, nonlinearity and breakdown voltage reached a maximum value which may show that good intergranular layer is formed as a results of proper cooling rate. Complex Impedance spectras were measured as a function of frequency range 100Hz to 13MHz to determine grain and grainboundary resistance. The semicircles were attributed to the dependence of grain and grainboundary resistance on cooling rates.

  • PDF

A Study on cooling technology of electronics communication device consoles using heat pipe exchangers (히트파이프 열교환기를 이용한 전자통신장비 콘솔의 냉각 기술에 관한 연구)

  • Choi, Jee-Hoon;Ryoo, Seong-Ryoul;Sung, Byung-Ho;Lee, Jung-Hwan;Kim, Jong-Man;Chun, Ji-Hwan;Suh, Myung-Won;Kim, Chul-Ju
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.483-486
    • /
    • 2006
  • The fan is widely used to cool high heat flux generated as of the electronic communication device consoles. It, however, makes a lot of noises that interfere considerably with the operation environment. This study was conducted to obtain the cooling design technology of the consoles through being equipped with the Heat Pipe Heat Exchangers (HPHE) together with low revolution fans in place of existing fans for the cooling technology of the forced convection. Not only the sealed type consoles but the HPHE were also designed so as to cool effectively the heat generated from the inside of the console. The simulation was conducted by computational numerical analysis along with its experiments. The results of the numerical analysis and experiments were compared in order to improve the cooling technology of the consoles mounted with the HPHE. Consequently, instead of loud fan noise generated as of existing forced convection methods, the cooling technology of HPHE can remarkably improve many problems such as the operation environment, indoor dust, malfunction caused by pollution sources and so on.

  • PDF

Molecular Distribution depending on the Cooling-off Condition in a Solution-Processed 6,13-Bis(triisopropylsilylethynyl)-Pentacene Thin-Film Transistor

  • Park, Jae-Hoon;Bae, Jin-Hyuk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.402-407
    • /
    • 2014
  • Herein, we describe the effect of the cooling-off condition of a solution-processed 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) film on its molecular distribution and the resultant electrical properties. Since the solvent in a TIPS-pentacene droplet gradually evaporates from the rim to the center exhibiting a radial form of solute, for a quenched case, domains of the TIPS-pentacene film are aboriginally spread showing original features of radial shape due to suppressed molecular rearrangement during the momentary cooling period. For the slowly cooled case, however, TIPS-pentacene molecules are randomly rearranged during the long cooling period. As a result, in the lopsided electrodes structure proposed in this work, the charge transport generates more effectively under the case for radial distribution induced by the quenching technique. It was found that the molecular redistribution during the cooling-period plays an important role on the magnitude of the mobility in a solution-processed organic transistor. This work provides at least a scientific basis between the molecular distribution and electrical properties in solution-processed organic devices.

A Study on Automatic Sensing Device for Water Leakage of Cooling Pipe at Blast Furnace by Use The Electronic System (전자제어 장치를 이용한 용광로 냉각관 누수 지동 감지장치 개발에 관한 연구)

  • Kang, Chang-Soo;Kang, Ki-Seong
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.25-30
    • /
    • 2009
  • The cooling water circulation pipes had been used to drop the temperature of refractory outside shell of blast furnace by cooling plate or stave type. They were attacked by surrounding CO gas and it was the cause that they were corroded and the water inflow in the refractory due to leakage of water. So, the life of refractory material was shorten and changed for the worse the conditions of blast furnace. The automatic sensing device for water leakage of cooling pipe was developed to check the position of trouble by use the micro-process system when cooling water leak and then CO gas will be inflowed into the cooling pipe at the leakage position. The inflowed CO gas will be detected in the micro-process system and delivered the detected position of cooling plate or stave to main control room through the wireless-radio relay station. This system can be possible to detect the position of cooling plate or stave the water leakage part immediately and then deliver the signal to main control room by use the micro-process system and wireless-radio relay station. This system will develop the working condition from manual system to unmanned auto alarm system.

Design of cooling channel in hot press forming process of Boron Steel (보론강 고온 성형 공정의 냉각 채널 설계)

  • Hong, S.M.;Ryu, S.Y.;Park, J.K.;Yoon, S.J.;Kim, K.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.367-370
    • /
    • 2009
  • Recently, ultra high strength products can be manufactured by the hot press forming process of Boron steel in automotive and electronics industries. In order to get high strength, the hot press forming should be accompanied by quenching process inducing phase transformation. In the study, the heat conductive die and the cooling channel were designed by the numerical simulation and the effect of three different parameters were determined to improve cooling characteristics.

  • PDF

The improvement of genetic algorithm using Boltzmann selection (유전자 알고리즘에서 볼쯔만 선택방법의 개선)

  • 윤기석;김태형;김유신
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.429-432
    • /
    • 1999
  • In this paper, we propose a method to improve Genetic Algorithm using Boltzmann selection which Michael has suggested. But Michael uses temperature schedule(the initial temperature, the cooling rate), which can be applicable only to the limited range of problems. We propose a new method to find the critical temperature and the cooling rate as parameters of the temperature schedule. The critical temperature can be derived from the distribution of each individual's fitness. Through the application of the island model where each island has differing cooling rate, it is proved that it is unnecessary to find the optimal cooling rate. The simulation on the TSP's with various city sizes proves the proposed critical temperature correct.

  • PDF

OPTIMAL DESIGN FOR COOLING SYSTEM OF DRIVING UNITS FOR HYBRID VEHICLES (하이브리드 자동차 구동시스템용 냉각 유로 최적화에 관한 연구)

  • Lee, K.H.;Kim, Jae-Won;Ahn, E.Y.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.62-69
    • /
    • 2009
  • The cooling system for electric devices of hybrid vehicles is examined. The present system is composed of coolant paths, inlet diffuser and heat sinks whose shapes are diamond and circular. In this work, inlet duct and fin arrays are combined in proposed models and examined by numerical calculations. Nusselt number and Reynolds number are considered for heat transfer performance. Main focus lies on the looking for optimal model for the cooling system adopted to compact driving module of a hybrid vehicle. The optimal model shows uniform flow patterns in the inlet diffuser and secondary flows after the fins attached to heat source. It is found that the vortical flows around the heat sinks are effective for heat removal mechanism.