• Title/Summary/Keyword: Electronics cooling

Search Result 323, Processing Time 0.026 seconds

Performance Test for the Performance Reliability of the Heat Pipe for Cooling Power Semiconductors (전력반도체 냉각용 히트파이프의 성능안정성 파악을 위한 성능시험)

  • 강환국
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2004
  • The heat pipe for cooling power semiconductor is required no performance changing during the life cycle up to 20 years. For the long reliable performance of the heat pipe, my reasons that has possibility to generate non condensable gases we not allowed. In this research, the maximum heat transport rate and operation characteristics that are related to various geometric and thermal conditions are carried out. Also the test items, specifications and methods to guarantee the long life cycle of the heat pipe for power semiconductor cooling device are provided and the tests are performed.

Cooling System for Power Transformer Using Weighting Function (하중함수를 이용한 전력용 변압기 냉각 시스템)

  • Cho, Do-Hyeoun
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.40-45
    • /
    • 2012
  • In this paper, cooling system of power transformers is proposed for temperature optimized control. We predict the peak temperature of power transformer coils using load factors and construct a cooling system using weighting function. For the optimized temperature control for power transformer, a correlation function based on the load factor of a load current and the each temperatures for winding coils, for air and for oil is presented to predict the winding-coil peak temperature. Also, the results controlled by applying the power transformer is presented.

Cooling System Design in Power Electronic

  • Kim Chan-Ki;Rhew Hong-Woo;Kim Yoon-Ho;Holtz J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.520-523
    • /
    • 2003
  • In this paper, heatsink design for high power converter is presented. There are many ways of designing heatsink, but air cooling is by far the most used and much more practical than any of the other methods. In this paper, the practical methods of cooling which include the method to reduce a noise and a vibration due to a fan and the method to design a gap resistance and a contact resistance due to mounting force between thyristor and heatsink is proposed. Finally, simulation and experimental results are described to verify validity of the proposed method.

  • PDF

Liquid Cooling System Using Planar ECF Pump for Electronic Devices (평면형 ECF 펌프를 이용한 전자기기 액체냉각 시스템)

  • Seo, Woo-Suk;Ham, Young-Bog;Park, Jung-Ho;Yun, So-Nam;Yang, Soon-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.95-103
    • /
    • 2007
  • This paper presents a liquid cooling concept for heat rejection of high power electronic devices existing in notebook computers etc. The design, fabrication, and performance of the planar ECF pump and farced-liquid cooling system are summarized. The electro-conjugate fluid (ECF) is a kind of dielectric and functional fluids, which generates jet flows (ECF-jets) by applying static electric field through a pair of rod-like electrodes. The ECF-jet directly acts on the working fluid, so the proposed planar ECF pump needs no moving part, produces no vibration and noise. The planar ECF pump, consists of a pump housing and electrode substrate, achieves maximum flow rate and output pressure of $5.5\;cm^3/s$ and 7.2 kPa, respectively, at an applied voltage of 2.0 kV. The farced-liquid cooling system, constructed with the planar ECF pump, liquid-cooled heat sink and thermal test chip, removes input power up to 80 W keeping the chip surface temperature below $70\;^{\circ}C$. The experimental results demonstrate that the feasibility of forced-liquid cooling system using ECF is confirmed as an advanced cooling solution on the next-generation high power electronic devices.

A Study on the Heat Transfer Analysis based on Insulation Thickness Variation of Cable Splice Part (지중케이블 접속부의 절연층 두께변화에 따른 열해석 연구)

  • 최규식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.246-255
    • /
    • 1998
  • The cable cooling through installing the cooling pipe along the transmission cable becomes universal in foreign leading countries, especially in Japan, and, there are so many study results inside and outside of the country. However, the remarkable study result for cooling method of cable splice part is not achieved in spite of its importance. This paper is, therefore, carrys out detailed heat transfer analysis of existing 154kV underground cable-splice, depending on the insulation thickness variation when it is installed in manhole of tunnel whose temperature is maintained as $10^{\circ}C$ using refrigerator. This paper study also the cooling method of underground cable splice based on this result.

  • PDF

The Analysis of Electrical Conduction and Corrosion Phenomena in HVDC Cooling System and the Optimized Design of the Heat Sink of the Semiconductor Devices (HVDC 냉각시스템의 전기전도현상 및 부식현상 기술 분석과 스위칭 소자의 방열판 최적 설계 검토)

  • Kim, Chan-Ki;Park, Chang-Hwan;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.484-495
    • /
    • 2017
  • In HVDC thyristor valves, more than 95% of heat loss occurs in snubber resistors and valve reactors. In order to dissipate the heat from the valves and to suppress the electrolytic current, water with a high heat capacity and a low conductivity of less than 0.2 uS/cm must be used as a refrigerant of the heat sink. The cooling parts must also be arranged to reduce the electrolytic current, whereas the pipe that supplies water to the thyristor heat sink must have the same electric potential as the valve. Corrosion is mainly caused by electrochemical reactions and the influence of water quality and leakage current. This paper identifies the refrigerants involved in the ionization, electrical conductivity, and corrosion in HVDC thyristor valves. A method for preventing corrosion is then introduced. The design of the heat sink with an excellent heat radiation is also analyzed in detail.

Evaluation of the operating reliability on the concurrent heating-cooling system air conditioner with high-head and long-line conditions (동시냉난방 시스템 에어컨의 고낙차 장배관 운전 신뢰성 평가)

  • Kim, Tae-An;Lee, Seung-Chan;Tae, Sang-Jin;Jung, Gyoo-Ha;Moon, Je-Myung;Kim, Youn-Jea
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.609-614
    • /
    • 2008
  • The heating and cooling performance of system multi-air conditioner under high-head and long-line conditions are experimentally investigated. The maximum head and tube length were 110 m and 1000 m, respectively. The experimental system was composed of 4 outdoor units with module systems, and 13 indoor units which were joined with the mode change unit by single-tube circuit. Field tests without indoor and outdoor temperature control were performed in a general office building with 22 different working conditions. Experimental results were prepared on the p-h diagram. Also the oil level in the compressor was normally maintained at the safety zone for the system multi-air conditioner with high-head and long-line conditions.

  • PDF

An experimental study on the cooling characteristics of electronic cabinet (전자장비 캐비넷의 냉각특성에 관한 실험적 연구)

  • Park, Jong-Heung;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2356-2366
    • /
    • 1996
  • High-power electronic chips have been advanced to such an extent that the heat dissipation capability of a system design has become one of the primary limiting factors. Therefore, thermal design must be considered in the early stage of the electronic system development. In present paper, the results of an experimental study on the forced convection cooling are presented to evaluate cooling performance of an electronic cabinet which in generally used for telecommunication system. Temperatures and thermal resistances are applied to compare the heat transfer characteristics for various locations of a fan unit as well as various configuration of non-uniform powering modules. As a result, the optimal configuration of a fan unit and powering configuration is suggested for the effective thermal design of telecommunication system.

Cooling Performance of a Notebook PC Mounted with Heat Spreader (히트 스프레더가 사용된 노트북 PC의 냉각성능에 관한 수치적 연구)

  • No, Hong-Gu;Im, Gyeong-Bin;Park, Man-Heung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.766-775
    • /
    • 2001
  • Parametric study to investigate the cooling performance of a notebook PC mounted with heat spreader has been numerically performed. Two cases of air-blowing and air-exhaust at inlet were tested. The cooling effect on parameters such as, inlet velocities in the cases of air-blowing and air-exhaust, materials of heat spreader, and CPU powers were simulated for two cases. Cooling performance in the case of air-blowing was better than the case of air-exhaust.

The Effect of Solution Pressure to the Release in a Supercooled Aqueous Solution

  • Kang, Chae-Dong;Kim, Byung-Seon;Hong, Hi-Ki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • Supercooled type ice storage system with aqueous solution (or water) may have trouble with non-uniform release of supercooling even though it contributes to the simplicity of system and ecological improvement. The non-uniform release increases the instability of the system because it may cause an ice blockage in pipe or cooling part. In order to suppress the release of the supercooling, a cooling experiment was tried to an ethylene glycol(EG) 3 mass% solution corresponding with pressurization. Also, the frequency ratio of the release of the supercooling was measured to the pressurization from 101 to 505 kPa. At results, the frequency ratio of supercooling release tends to decrease as the pressure of the aqueous solution increased in each cooling rate. Moreover, it tends to decrease as the cooling rate of the solution decreased in each pressure.