• Title/Summary/Keyword: Electronic vehicle charging

Search Result 53, Processing Time 0.027 seconds

Electric Vehicle Charging Control System using a Smartphone Application Based on WiFi Communication (WiFi 기반 스마트폰 어플리케이션을 이용한 전기자동차 충전제어시스템)

  • Ro, Sunny;Lee, Kyung-Jung;Ki, Young-Hun;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1138-1143
    • /
    • 2013
  • In this paper, we propose a smartphone application based on a wireless fidelity(WiFi) in order to control the charging of electric vehicle(EV) and monitor the charging status together with the vehicle history information. The driver obtains much information on vehicle status through a smartphone application which communicates with the electric vehicle supply equipment(EVSE) management server while the EV also communicates with the EVSE for the authentification through controller area network(CAN). We also implement the simulator for the EV charging control system to verify the functions of the proposed application where the simulator consists of an EV model, an EVSE, and a smartphone. It is shown by the simulator that the proposed smartphone application allows the driver to control and to monitor the charging process of an EV conveniently and, moreover, it can provide the driver with vehicle information stored in the EVSE management server.

A Technology Trend and Analysis of Electric Vehicle Wireless Charging System (전기 자동차 무선 충전 시스템 기술 동향 및 분석)

  • Lim, Jong-Gyun;Lee, Dong-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.255-260
    • /
    • 2021
  • The importance of electric vehicles is gradually increasing due to the recent depletion of fossil fuels. In order to use an electric vehicle, the battery built into the vehicle must be frequently charged. Electric vehicles has very good performance in terms of noise and vibration. However, due to the limitations of the battery, the mileage is considerably shorter than that of an internal combustion engine vehicle once it is charged, and the battery charging time is relatively long compared to the refueling time. There are two types of charging methods for electric vehicle batteries: plug-in and wireless charging. In this paper, we introduced the wireless charging technology for electric vehicles and the current state of technology development and standards in major countries.

Development of a Smart Grid Monitoring System with Anti-Islanding Function for Electric Vehicle Charging (안티아일랜딩 기능을 적용한 전기자동차 충전계통 연계 스마트그리드 모니터링 시스템 개발)

  • Ro, Sunny;Shin, Bum-Sik;Lee, Kyung-Jung;Ki, Young-Hun;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.31-37
    • /
    • 2012
  • In this paper, we present a smart grid monitoring system connected with electric vehicle charging system using anti-islanding method. Electric vehicles can be charged through remote control of smart grid monitoring system and the charging process may be more stable and more efficient by wireless communication between the Local Area Module and End Modules. It is illustrated by some experiments that electric vehicle charging process may not be interrupted without any serious fault even though the islanding phenomena occurred in the grid if the presented monitoring system was applied to the smart grid system.

Decision-Making of Determining the Start Time of Charging / Discharging of Electrical Vehicle Based on Prospect Theory

  • Liu, Lian;Lyu, Xiang;Jiang, Chuanwen;Xie, Da
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.803-811
    • /
    • 2014
  • The moment when Electrical Vehicle (EV) starts charging or discharging is one of the most important parameters in estimating the impact of EV load on the grid. In this paper, a decision-making problem of determining the start time of charging and discharging during allowed period is proposed and studied under the uncertainty of real-time price. Prospect theory is utilized in the decision-making problem of this paper for it describes a kind of decision making behaviors under uncertainty. The case study uses the parameters of Springo SGM7001EV and adopts the historical realtime locational marginal pricing (LMP) data of PJM market for scenario reduction. Prospect values are calculated for every possible start time in the allowed charging or discharging period. By comparing the calculated prospect values, the optimal decisions are obtained accordingly and the results are compared with those based on Expected Utility Theory. Results show that with different initial State-of-Charge ($SoC_0$) and different reference points, the optimal start time of charging can be the one between 12 a.m. to 3 a.m. and optimal discharging starts at 2 p.m. or 3p.m. Moreover, the decision results of Prospect Theory may differ from that of the Expected Utility Theory with the reference points changing.

Mobile Edge Computing based Charging Infrastructure considering Electric Vehicle Charging Efficiency (전기자동차 충전 효율성을 고려한 모바일 에지 컴퓨팅 기반 충전 인프라 구조)

  • Lee, Juyong;Lee, Jihoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.669-674
    • /
    • 2017
  • Due to the depletion of fossil fuels and the increase in environmental pollution, electric vehicles are attracting attention as next-generation transportation and are becoming popular all over the world. As the interest in electric vehicles and the penetration rate increase, studies on the charging infrastructure with vehicle-to-grid (V2G) technology and information technology are actively under way. In particular, communication with the grid network is the most important factor for stable charging and load management of electric vehicles. However, with the existing centralized infrastructure, there are problems when control-message requests increase and the charging infrastructure cannot efficiently operate due to slow response speed. In this paper, we propose a new charging infrastructure using mobile edge computing (MEC) that mitigates congestion and provides low latency by applying distributed cloud computing technology to wireless base stations. Through a performance evaluation, we confirm that the proposed charging infrastructure (with low latency) can cope with peak conditions more efficiently than the existing charging infrastructure.

Charging Control of Wireless Charging System (무선충전시스템의 충전 제어 방식)

  • Shin, Han-Ho;Heo, Joon;Jeon, Seong-Jeub
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.303-309
    • /
    • 2019
  • A hybrid control of a rectifier/regulator of wireless power transfer systems for electric vehicles is studied. A combined rectifier/regulator is used for charging control. The hybrid control comprises integral cycle control and pulse width modulation control to cope with the variations in the induced voltage due to clearance and alignment. The hybrid control has good control capability and does not cause severe switching loss. A 22 kW prototype of the Wireless Power Transfer class 4 charging system defined by the Society of Automotive Engineers is constructed and tested to verify the proposal.

A Study on EVs Smart Charging Scheme Considering Time-of-Use Price and Actual Data (Time-of-Use 가격 및 실제 데이터를 고려한 전기 자동차 스마트 충전기법에 대한 연구)

  • Kim, Junhyeok;Kim, Chulhwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1793-1799
    • /
    • 2016
  • As one of the main trends in global industries is eco-friendly energy, the interest on Electric Vehicle(EV) has been increased. However, if large amount of EVs start to charging, it could cause rapid increase in demand power of the power system. To guarantee stable operation of the power system, those unpredictable power consume should be mitigated. In this paper, therefore, we propose a practical smart EVs charging scheme to prevent the rapid increase of the demand power and also provide load flattening function. For that we considered Time-of-Use(ToU) price and actual data such as driving pattern and parameters of distribution system. Simulation results show that the proposed method provides proper load flattening function while preventing the rapid increase of the demand power of the power system.

A Study of Electronic Vehicle Charging Station Structure System Using PV(Photovoltaic) System (PV 시스템을 이용한 전기자동차 충전소의 구조시스템 연구)

  • Lim, Jae-Hwi;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.105-112
    • /
    • 2011
  • Fundamental Electric vehicle charge system is urgently needed for commercialization of electric vehicles. Car parking building is equipped with PV system for providing electricity to charge electric vehicles, because it must be charged at least for 30 minutes. In parking lots abroad, electric car charging stations are installed to charge electric cars by the electricity gained from PV systems which are also installed. Also, charge infrastructure construction plans and electric car charging facility support standards are being set and proposed, but there are no cases like abroad of electric car charging stations using PV systems and only electric car charging stations using ordinary electricity are being proposed. Therefore, this paper prepares establishment of domestic electric car charging networks. By researching inside outside solar parking lots and cases of abroad PV system electric car charging stations, and by analysis and comparative analysis of structural systems, structural material, and etc., many cantilever structure and small-size types were installed in PV system electric car charging stations.

Design and Application of Power Line Communication Module for V2G Conforming with International Standard for Electric Vehicle Charging Infrastructure (EV 충전인프라를 위한 국제표준에 부합하는 V2G용 전력선통신모듈 설계 및 응용)

  • Kim, Chul-Soo;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1183-1190
    • /
    • 2018
  • The environmental regulations are being strengthened all over the world, and the introduction of electric vehicles are actively being considered to cope with them effectively. It is essential to establish a charging infrastructure, which is an essential element of electric vehicle distribution. In this paper, power line communication technology essential for smart charging infrastructure is studied. A control board capable of achieving a physical layer speed of 10Mbps and a TCP/IP layer of 4.5Mbps, which conforms to the ISO/IEC 15118 international standard, and a control board mounted on the board and compliant with international standards. We have developed a software solution to perform functions for linking. In addition, in order to be applied to the combo-type DC fast charger, the hardware was designed to meet the industrial environment standard and the V2G communication module was developed by integrating it with the software solution.