• Title/Summary/Keyword: Electronic fuel injection pump

Search Result 9, Processing Time 0.021 seconds

Simulation of High Pressure Common-rail Fuel Injection System (커먼레일 고압분사 시스템 수치 시뮬레이션)

  • 김홍열;구자예;나형규;김창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.162-173
    • /
    • 1998
  • The high pressure common rail injection system offers a high potential for improving emmisions and performance characteristics in large direct diesel engines. High pressures in the common rail with electronic control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine rpm and load conditions. In this study, high pressure supply pump, common rail, pipes, solenoid and control chamber, and nozzle were modeled in order to predict needle lift, rate of injection, and total injected fuel quantity. When the common rail pressure is raised up to 13.0 ㎫ and the targer injection duration is 1.0ms, the pressure drop in common rail is about 5.0㎫. The angle of effective pressurization is necessary to be optimized for the minimum pump drive torque and high pressure in common rail depending on the operating conditions. The characteristics of injection were also greatly influenced by the pressures in common rail, the areas of the inlet and exit orifice of the control chamber.

  • PDF

An Experimental Study on Electronic Injection System for Pollutant Reduction in a DI Diesel Engine (직접분사식 디젤엔진에서의 공해저감을 위한 전자분사 시스템에 관한 실험적 연구)

  • ;;;;Ale
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 1997
  • The pump-pipe-injector system is that most commonly used type of injection equipment for diesel engines. In this study, a new electromagnetic fuel injection system was designed and carried out the experiment of single cylinder direct injection(DI) diesel engine. This system do not need the cam shaft for fuel injection. The effects of the injection timing on the combustion process and emission were investigated. The results are that 1) atomization was improved, 2) combustion pressure was increased and ignition delay became shorter than before, 3) Low smoke level guarantee with more advanced injection timing without abnormal combustion but NOX concentration was increased as the injection time advanced.

  • PDF

Hydraulic Modal Analysis of High-Pressure Common-rail Fuel Injection System for Passenger Vehicle (승용 CR 연료분사시스템에 대한 유압 Modal 분석)

  • Sung, Gisu;Kim, Sangmyeong;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • Recently, R&D demand for environmental friendly vehicle has rapidly increased due to its global environmental issues such as global warming, energy and economic crisis. Under this situation, the most realistic alternative way for environmental friendly vehicle is a clean diesel vehicle. The common-rail fuel injection system, as key technology of clean diesel vehicle, consists of a high pressure pump, common-rail, high pressure fuel line and electronic control injector. In common-rail high-pressure fuel injection system, high pressure wave of injection system and geometry of injector elements have a major effects on high-pressure fuel spray. Therefore, in this study, the numerical model was developed for analysis about the common-rail fuel pressure pulsation by using AMESim code. We could secure stability of common-rail high-pressure fuel injection system through optimal design of fuel line.

A Study on Optimal Design of Direct Needle-driven Piezo Injector for Accomplishing Injection Pressure of 1800 bar (분사압력 1800 bar 실현을 위한 직접 니들구동방식 피에조 인젝터 설계 최적화 연구)

  • Han, Sangik;Kim, Juhwan;Ji, Hyungsun;Go, Junchae;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2016
  • The advantages of the common rail fuel injection system architecture have been recognized since the development of the diesel engine. In common rail systems, a high-pressure pump stores a reservoir of fuel at high pressure up to and above 2000 bar. And solenoid or piezoelectric valves make possible fine electronic control over the fuel injection time and quantity, and the higher pressure that the common rail technology makes available provides better fuel atomization. In this study, the direct needle-driven piezo injector was investigated for accomplishing injection pressure of 1800 bar by optimal design by simplification of component and changing number of springs and plates of DPI. It was found that a direct needle-driven piezo injection system features the prototype DPI for passenger vehicle to operate at 1800 bar of injection pressure.

Combustion Pressure Monitoring System for Engine Control; By Simultaneous and Continuous Measuring of All Cylinders

  • Mihara, Y.;Maruyama, Y.;Okada, Y.;Kido, H.;Nishida, O.;Fujita, H.;Ito, M.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.269-276
    • /
    • 2004
  • A marine diesel engine should realize optimal efficiency operation while reducing NOx. Fuel injection systems by electronic control can become effective means for that. Although it would be able to get more precise engine control compared to the mechanical injection system, it needs some accurate and instant information in order to bring its ability into full play while sailing on the sea. Very important information of them is shaft torque and continuous combustion pressure of all cylinders. The system presented in this report can deliver those data.

Effects of Parameters of Combustion and Fuel Injection System on Performance and Exhaust Emissions in a Diesel Engine (연소계 및 연료분사계의 구성인자가 디젤엔진의 성능 및 배기 배출물에 미치는 영향)

  • Lee, Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.166-173
    • /
    • 2006
  • This study investigates a heavy duty diesel engine with swept vol. 12.6L, 4cycle-OHC type to verify the effects of the performance and exhaust gas emission according to the variable specifications of both swirl ratio and flow coefficient in inlet port, combustion bowl and fuel injection system. To meet the high BMEP and stringent exhaust emission standard, a turbocharger with wastegate and an intercooler were installed in the engine. Helical port, major design parameters for combustion chamber and electronic fuel injection pump with 1,000bar were reviewed and applied. Confirmation tests were also performed to meet the target value, $NO_x$ 5.0g/kWh and PM 0.1g/kWh of Euro3 exhaust emission legislation. The results of this study show that not only is it effective to use a relatively bigger bowl size for controlling rapid burning condition due to the decreased in-bowl swirl, but also to use a concave cam with double injection rates to decrease $NO_x$.

Low Temperature Fluidity Performance Evaluation of Composited Package Fuel Heater for Diesel Cars (디젤차량용 통합연료히터의 저온유동성 성능평가)

  • Lee, Jeong-Hwa;Park, Hyung-Won;Lee, Woong-Su;Lee, Young-Jea;Lee, Bo-Hee;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.152-158
    • /
    • 2014
  • It is very important to supply the diesel fuel from fuel tank to combustion chamber in case of cold start procedure. the paraffin hydrocarbons are easily solidified at low fuel temperature and it can be blocking the fuel supply to the high pressure fuel pump. In order to reduce the fuel crystallization (Waxing), it have been used to develop not only cold flow additives but also the proper mounting design of fuel filter. Block heater in the fuel filter assembly have been also contained to improve the cold start and prevent blocking the fuel supply in Common Rail Direct Injection System. we can obtain the fuel pressure drop and fuel flow rate, power consumption of fuel heater to have the cold flow evaluation test with the saperated and composited fuel heater at the low ambient temperature, Due to evaluating cold flow performance of two block heater, we knew that composited package fuel heater was the excellent cold flow performance compared to separated type and obtained the parameters of cold flow.

Control of Heat Pump for Low Emission Diesel Engine (저공해 중소형 디젤차량 히트펌프 제어)

  • Park, Byung-Duck;Lee, Won-Suk;Won, Jong-Phil;Kwon, Sun-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.379-384
    • /
    • 2002
  • As automotive diesel engines adopt the direct injection method for a lower level of the exhaust emission and a higher fuel efficiency, the maximum temperature of engine coolant decreases. Consequently, the total available heat source from the engine coolant decreases over 35%. However, the heating source of air-conditioning system in automobiles depends on the hot engine coolant completely, so that it is nearly impossible to control air conditioning in heating season. Therefore, the present study has been carried out to develop the air conditioning system for the high efficient heat pump type using the HFC-134a. Especially, the air conditioning system of heating has been developed at a beginning stage, when it has low heat source from small and medium sized diesel recreation vehicles. To develop a control logic system for air conditioning system which is a heat pump type with a heat recovery exchanger, its cycle characteristics has been investigated according to the opening of LEV at a bench system.

  • PDF

A Study on the Monitoring System for Engine Control by Measuring Combustion Pressure Continuously in All Cylinders

  • Miharat Yoshinori;Maruyama Yasuo;Okada Yutaka;Kido Hachiro;Nishida Osami;Fujita Hirotsugu;Ito Masakazu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.713-721
    • /
    • 2005
  • A marine diesel engine should realize optimal operation efficiency while reducing NOx, PM (Particulate Matters) and other emissions. Fuel injection systems that use electronic control can become an effective means of achieving that objective. However. it still needs some accurate and instant information in order to bring its ability into full potential while sailing on the sea. The important information of them are a shaft torque and continuous combustion pressures of all cylinders. The shaft torque and the propeller thrust described in this paper are measured at an intermediate shaft by using a unique principle that one of two electromagnet coils oscillates a vibrating strip which the length changes with force and the other coil picks up the change of the frequency of the vibrating strip. For further reference, the shaft power meter multiplied the torque by the shaft revolution has already had about 750 sets of sales performance. The research presented in this paper started about ten years ago and is concerned with the development of a combustion pressure sensor that uses the same principle. Recently, the pressure sensor which bears continuous operation has been developed after a hard struggle, that is, the system that consists of a shaft horsepower meter, a propeller thrust meter and a combustion pressure sensor has been completed and has been shown to be reliable. This paper describes the configuration of this system, the material of the combustion pressure sensor, the principle of that, and the improving point of the sensor, and, we finally consider the use of this system.