• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.033 seconds

Security Measures in Response to Future Warfare and Changes in the Network Environment (미래전과 네트워크 환경 변화에 따른 보안대책)

  • Donghan Oh;Kwangho Lee
    • Convergence Security Journal
    • /
    • v.21 no.4
    • /
    • pp.49-57
    • /
    • 2021
  • The 4th industrial revolution will develop the network environment of future warfare through the increase of IoT devices, individual warrior platforms, the operation of manned and unmanned weapon systems, intelligent command post. They are leading to the weapon system combined with hundreds or thousands of sensors will be used for surveillance and reconnaissance, electronic warfare, and deception operations on the battlefield. This change to the environment brings superiority in operational performance on the battlefield, but if the weapon system is exposed to the outside, it will lead to fatal results. In this paper, we analyze the network environment that is changing in the future warfare environment, focusing on the currently used network. In addition, it considers information security issues that must correspond to the evolving network technology and suggests various security measures to suggest the direction our military should take in the future.

Manufacturing Strategies for Silicone Oil Based Stable Thermal Pastes with High Thermal Conductivity (고열전도도 및 장기 안정성을 지닌 실리콘 오일 기반 방열 페이스트 제조법)

  • Yongsu Jo;Chae Bin Kim
    • Composites Research
    • /
    • v.37 no.5
    • /
    • pp.422-426
    • /
    • 2024
  • Due to the rapid miniaturization and increased power density of electronic devices, a significant amount of heat is generated during operation. This has led to a surge in demand for thermal management materials, such as thermal interface materials (TIMs) with high thermal conductivity. Among the various types, paste-type TIMs, mixtures of liquid silicone polymers and thermal fillers, can effectively fill the rough surfaces between heat sources and heat sinks, thereby ensuring efficient heat dissipation. However, thermal pastes generally exhibit poor long-term stability due to issues like filler/resin phase separation under extreme conditions of repeated heating, cooling, and prolonged compression. Consequently, research on high-performance thermal pastes with excellent long-term stability is actively underway. This paper aims to introduce various strategies for producing silicone oil based thermal pastes that achieve both high thermal conductivity and superior long-term stability.

Effects of Encapsulation Layer on Center Crack and Fracture of Thin Silicon Chip using Numerical Analysis (봉지막이 박형 실리콘 칩의 파괴에 미치는 영향에 대한 수치해석 연구)

  • Choa, Sung-Hoon;Jang, Young-Moon;Lee, Haeng-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Recently, there has been rapid development in the field of flexible electronic devices, such as organic light emitting diodes (OLEDs), organic solar cells and flexible sensors. Encapsulation process is added to protect the flexible electronic devices from exposure to oxygen and moisture in the air. Using numerical simulation, we investigated the effects of the encapsulation layer on mechanical stability of the silicon chip, especially the fracture performance of center crack in multi-layer package for various loading condition. The multi-layer package is categorized in two type - a wide chip model in which the chip has a large width and encapsulation layer covers only the chip, and a narrow chip model in which the chip covers both the substrate and the chip with smaller width than the substrate. In the wide chip model where the external load acts directly on the chip, the encapsulation layer with high stiffness enhanced the crack resistance of the film chip as the thickness of the encapsulation layer increased regardless of loading conditions. In contrast, the encapsulation layer with high stiffness reduced the crack resistance of the film chip in the narrow chip model for the case of external tensile strain loading. This is because the external load is transferred to the chip through the encapsulation layer and the small load acts on the chip for the weak encapsulation layer in the narrow chip model. When the bending moment acts on the narrow model, thin encapsulation layer and thick encapsulation layer show the opposite results since the neutral axis is moving toward the chip with a crack and load acting on chip decreases consequently as the thickness of encapsulation layer increases. The present study is expected to provide practical design guidance to enhance the durability and fracture performance of the silicon chip in the multilayer package with encapsulation layer.

Implant Isolation Characteristics for 1.25 Gbps Monolithic Integrated Bi-Directional Optoelectronic SoC (1.25 Gbps 단일집적 양방향 광전 SoC를 위한 임플란트 절연 특성 분석)

  • Kim, Sung-Il;Kang, Kwang-Yong;Lee, Hai-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.52-59
    • /
    • 2007
  • In this paper, we analyzed and measured implant isolation characteristics for a 1.25 Gbps monolithic integrated hi-directional (M-BiDi) optoelectronic system-on-a-chip, which is a key component to constitute gigabit passive optical networks (PONs) for a fiber-to-the-home (FTTH). Also, we derived an equivalent circuit of the implant structure under various DC bias conditions. The 1.25 Gbps M-BiDi transmit-receive SoC consists of a laser diode with a monitor photodiode as a transmitter and a digital photodiode as a digital data receiver on the same InP wafer According to IEEE 802.3ah and ITU-T G.983.3 standards, a receiver sensitivity of the digital receiver has to satisfy under -24 dBm @ BER=10-12. Therefore, the electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysed and measured results of the implant structure, the M-BiDi SoC with the implant area of 20 mm width and more than 200 mm distance between the laser diode and monitor photodiode, and between the monitor photodiode and digital photodiode, satisfies the electrical crosstalk level. These implant characteristics can be used for the design and fabrication of an optoelectronic SoC design, and expended to a mixed-mode SoC field.

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

Review on Usefulness of EPID (Electronic Portal Imaging Device) (EPID (Electronic Portal Imaging Device)의 유용성에 관한 고찰)

  • Lee, Choong Won;Park, Do Keun;Choi, A Hyun;Ahn, Jong Ho;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.57-67
    • /
    • 2013
  • Purpose: Replacing the film which used to be used for checking the set-up of the patient and dosimetry during radiation therapy, more and more EPID equipped devices are in use at present. Accordingly, this article tried to evaluated the accuracy of the position check-up and the usefulness of dosimetry during the use of an electronic portal imaging device. Materials and Methods: On 50 materials acquired with the search of Korea Society Radiotherapeutic Technology, The Korean Society for Radiation Oncology, and Pubmed using "EPID", "Portal dosimetry", "Portal image", "Dose verification", "Quality control", "Cine mode", "Quality - assurance", and "In vivo dosimetry" as indexes, the usefulness of EPID was analyzed by classifying them as history of EPID and dosimetry, set-up verification and characteristics of EPID. Results: EPID is developed from the first generation of Liquid-filled ionization chamber, through the second generation of Camera-based fluoroscopy, and to the third generation of Amorphous-silicon EPID imaging modes can be divided into EPID mode, Cine mode and Integrated mode. When evaluating absolute dose accuracy of films and EPID, it was found that EPID showed within 1% and EDR2 film showed within 3% errors. It was confirmed that EPID is better in error measurement accuracy than film. When gamma analyzing the dose distribution of the base exposure plane which was calculated from therapy planning system, and planes calculated by EDR2 film and EPID, both film and EPID showed less than 2% of pixels which exceeded 1 at gamma values (r%>1) with in the thresholds such as 3%/3 mm and 2%/2 mm respectively. For the time needed for full course QA in IMRT to compare loads, EDR2 film recorded approximately 110 minutes, and EPID recorded approximately 55 minutes. Conclusion: EPID could easily replace conventional complicated and troublesome film and ionization chamber which used to be used for dosimetry and set-up verification, and it was proved to be very efficient and accurate dosimetry device in quality assurance of IMRT (intensity modulated radiation therapy). As cine mode imaging using EPID allows locating tumors in real-time without additional dose in lung and liver which are mobile according to movements of diaphragm and in rectal cancer patients who have unstable position, it may help to implement the most optimal radiotherapy for patients.

  • PDF

Analysis of the Imaging Dose for IGRT/Gated Treatments (영상유도 및 호흡동조 방사선치료에서의 영상장비에 의한 흡수선량 분석)

  • Shin, Jung-Suk;Han, Young-Yih;Ju, Sang-Gyu;Shin, Eun-Hyuk;Hong, Chae-Seon;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.27 no.1
    • /
    • pp.42-48
    • /
    • 2009
  • Purpose: The introduction of image guided radiation therapy/four-dimensional radiation therapy (IGRT/4DRT) potentially increases the accumulated dose to patients from imaging and verification processes as compared to conventional practice. It is therefore essential to investigate the level of the imaging dose to patients when IGRT/4DRT devices are installed. The imaging dose level was monitored and was compared with the use of pre-IGRT practice. Materials and Methods: A four-dimensional CT (4DCT) unit (GE, Ultra Light Speed 16), a simulator (Varian Acuity) and Varian IX unit with an on-board imager (OBI) and cone beam CT (CBCT) were installed. The surface doses to a RANDO phantom (The Phantom Laboratory, Salem, NY USA) were measured with the newly installed devices and with pre-existing devices including a single slice CT scanner (GE, Light Speed), a simulator (Varian Ximatron) and L-gram linear accelerator (Varian, 2100C Linac). The surface doses were measured using thermo luminescent dosimeters (TLDs) at eight sites-the brain, eye, thyroid, chest, abdomen, ovary, prostate and pelvis. Results: Compared to imaging with the use of single slice non-gated CT, the use of 4DCT imaging increased the dose to the chest and abdomen approximately ten-fold ($1.74{\pm}0.34$ cGy versus $23.23{\pm}3.67$cGy). Imaging doses with the use of the Acuity simulator were smaller than doses with the use of the Ximatron simulator, which were $0.91{\pm}0.89$ cGy versus $6.77{\pm}3.56$ cGy, respectively. The dose with the use of the electronic portal imaging device (EPID; Varian IX unit) was approximately 50% of the dose with the use of the L-gram linear accelerator ($1.83{\pm}0.36$ cGy versus $3.80{\pm}1.67$ cGy). The dose from the OBI for fluoroscopy and low-dose mode CBCT were $0.97{\pm}0.34$ cGy and $2.3{\pm}0.67$ cGy, respectively. Conclusion: The use of 4DCT is the major source of an increase of the radiation (imaging) dose to patients. OBI and CBCT doses were small, but the accumulated dose associated with everyday verification need to be considered.

International Conference on Electroceramics 2005 (2005년도 국제 전자세라믹 학술회의)

  • 한국세라믹학회
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2005.06a
    • /
    • pp.1-112
    • /
    • 2005
  • This report is results of a research on recent R&D trends in electroceramics, mainly focusing on the papers submitted to the organizing committee of the International Conference on Electroceramics 2005 (ICE-2005) which was held at Seoul on 12-15 June 2005. About 380 electroceramics researchers attended at the ICE-2005 from 17 countries including Korea, presenting and discussing their recent results. Therefore, we can easily understand the recent research trends in the field of electroceramics by analyses of the subject and contents of the submitted papers. In addition to the analyses of the papers submitted to the ICE-2005, we also collected some informations about domestic and international research trends to help readers understand this report easily. We analysed the R&D trends on the basis of four main categories, that is, informatics electroceramics, energy and environment ceramics, processing and characterization of electroceramics, and emerging fields of electroceramics. Each main category has several sub-categories again. The informatics ceramics category includes integrated dielectrics and ferroelectrics, oxide and nitride semiconductors, photonic and optoelectronic devices, multilayer electronic ceramics and devices, microwave dielectrics and high frequency devices, and piezoelectric and MEMS applications. The energy and environment ceramics category has four sub-categories, that is, rechargable battery, hydrogen storage, fuel cells, and advanced energy conversion concepts. In the processing and characterization category, there exist domain, strain, and epitaxial dynamics and engineering sub-category, innovative processing and synthesis sub-category, nanostructured materials and nanotechnology sub- category, single crystal growth and characterization sub-category, theory and modeling sub-category. Nanocrystalline electroceramics, electroceramics for smart sensors, and bioceramics sub-categories are included to the emerging fields category. We hope that this report give an opportunity to understand the international research trend, not only to Korean ceramics researchers but also to science and technology policy researchers.

  • PDF

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

Validation of Electronic Foot Function Index in Patients with Foot and Ankle Disease: A Randomized, Prospective Multicenter Study (족부 족관절 질환 환자에서 전자식 족부 기능 지수의 인증: 임의 배정, 전향적, 다기관 연구)

  • Lee, Dong Yeon;Kim, Yu Mi;Lee, Jun Hyung;Kim, Jin;Kim, Ji-Beom;Kim, Bom Soo;Choi, Gi Won;Seo, Sang Gyo;Kim, Jun Beom;Park, Se-Jin;Kim, Yoon-Chung;Choi, Young Rak;Lee, Dong-Oh;Cho, Jae-Ho;Chun, Dong-Il;Kim, Hyong Nyun;Park, Jae-Yong
    • Journal of Korean Foot and Ankle Society
    • /
    • v.23 no.1
    • /
    • pp.24-30
    • /
    • 2019
  • Purpose: To evaluate the efficiency of the electronic foot function index (eFFI) through a prospective, random based, multi-institutional study. Materials and Methods: The study included 227 patients ranging in age from 20 to 79 years, visited for surgery in different 15 institutes, and agreed to volunteer. The patients were assigned randomly into a paper-based evaluated group (n=113) and tablet-based evaluated group (n=114). The evaluation was done on the day of hospital admission and the method was changed on the second day of surgery and re-evaluated. PADAS 2.0 (https://www.proscore.kr) was used as an electronic evaluation program. Results: There were no differences in age and sex in both groups. The intraclass correlation coefficient (ICC) evaluation revealed an eFFI ICC of 0.924, showing that both results were similar. The evaluation time was shorter in the tablet-based group than the paper-based group (paper vs tablet, $3.7{\pm}3.8$ vs $2.3{\pm}1.3minutes$). Thirty-nine patients (17.2%) preferred to use paper and 131 patients (57.7%) preferred the tablet. Fifty-seven patients (25.1%) found both ways to be acceptable. Conclusion: eFFI through tablet devices appears to be more constant than the paper-based program. In addition, it required a shorter amount of time and the patients tended to prefer the tablet-based program. Overall, tablet and cloud system can be beneficial to a clinical study.