• Title/Summary/Keyword: Electronic device

Search Result 4,550, Processing Time 0.031 seconds

Study on Current Switching in Electronic Devices Based on Vanadium Dioxide Thin Films Using CO2 Laser (이산화탄소 레이저를 이용한 바나듐 이산화물 박막 전자 소자에서의 전류 스위칭에 관한 연구)

  • Kim, Jihoon;Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • With a collimated $CO_2$ laser beam, the bidirectional current switching was realized in a two-terminal electronic device based on a highly resistive vanadium dioxide($VO_2$) thin film. A $VO_2$ thin film was grown on a $Al_2O_3$ substrate by a pulsed laser deposition method. For the fabrication of a two-terminal electronic device, the $VO_2$ thin film was etched by an ion beam-assisted milling method, and the $VO_2$ device, of which $VO_2$ patch width and electrode separation were 50 and $100{\mu}m$, respectively, was fabricated through a photolithographic method. A bias voltage range for stable bidirectional current switching was found by using the current-voltage property of the device measured in a current-controlled mode. The transient responses of bidirectionally switched currents were analyzed when the laser was modulated at a variety of pulse widths and repetition rates. A switching contrast was measured as ~3333, and rising and falling times were measured as ~39 and ~21ms, respectively.

A Study on Impementing a Raspberry Pi-based IoT Gateway using the Mobius Platform (Mobius platform을 활용한 Raspberry PI 기반 IoT Gateway 구현에 관한 연구)

  • So-Haeng Lee;Kwon-Yeon Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.809-816
    • /
    • 2023
  • The purpose of this study is to implement a device using the Raspberry Pi that can transmit and supervise data between devices and servers using the oneM2M standard platform, Mobius. Operating under the same concept as a Gateway or Router, this device performs the role of forwarding packets sent from end nodes to other networks. Theoretical functionality has been achieved to concurrently connect and supervise up to 65536 devices. The communication methods for end nodes connected to the Gateway include ZigBee and WiFi, and for long-distance communication, tests were conducted using LoRa modules.

A study on the Dielectric Characteristics of Polyimide Organic Ultra Thin Films (폴리이미드 유기초박막의 유전특성에 관한 연구)

  • Chon, D.K.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1744-1746
    • /
    • 1999
  • In this paper, we give pressure stimulation into organic ultra thin films and detected the induced displacement current properties, and then manufacture a device under the accumulation condition. In processing of a device manufacture, we can see the process is good from the change of a surface pressure and transfer ratio of area per molecule of organic ultra thin films. The structure of manufactured device is MIM(Au/polyimide LB films/AU), the number of accumulated 19 layers. I-V characteristic of the device is measured from -5[V] to +5[V]. The maximum value of measured current is increased as the number of accumulated layers are decreased. The insulation of a thin film is better as the interval between electrodes is larger, and the insulation properties of a thin film is better as the distance between electrodes is larger.

  • PDF

Characteristics of a Carbon Nanotube-based Tunnel Magnetoresistance Device

  • Kim, Jinhee;Woo, Byung-Chill;Kim, Jae-Ryoung;Park, Jong-Wan;So, Hye-Mi;Kim, Ju-Jin
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.98-100
    • /
    • 2002
  • Tunnel magnetoresistive devices using an individual multi-walled carbon nanotube were fabricated and their low-temperature electrical transport propertiers were investigated. With the ferromagnetic Co electrodes, the multi-walled carbon nanotube exhibited hysteretic magnetoresistance curve at low temperatures. Depending on the temperature and the bias current, the magnetoresistance ratio can be as high as 16% at the temperature of 2.2 K. Such high magnetoresistance ratio indicates a long diffusion length of the multi-walled carbon nanotube.

Suppression of Gate Oxide Degradation for MOS Devices Using Deuterium Ion Implantation Method

  • Lee, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.188-191
    • /
    • 2012
  • This paper introduces a new method regarding deuterium incorporation in the gate dielectric including deuterium implantation and post-annealing at the back-end-of-the process line. The control device and the deuterium furnace-annealed device were also prepared for comparison with the implanted device. It was observed that deuterium implantation at a light dose of $1{\times}10^{12}-1{\times}10^{14}/cm^2$ at 30 keV reduced hot-carrier injection (HCI) degradation and negative bias temperature instability (NBTI) within our device structure due to the reduction in oxide charge and interface trap. Deuterium implantation provides a possible solution to enhance the bulk and interface reliabilities of the gate oxide under the electrical stress.

Cross Talk among Pyroelectric Sensitive Elements in Thermal Imaging Device

  • Bang Jung Ho;Yoon Yung Sup
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.780-783
    • /
    • 2004
  • The two-dimensional modeling of the non-stationary thermal state and voltage responsivity of the sensitive elements usually used in solid-state pyroelectric focal plane arrays are presented. Temperature distributions under periodical thermal excitation and the response of the thermal imaging device, which is composed of the pyroelectric sensitive elements mounted on a single silicon substrate, are numerically calculated. The sensitive element consists of a covering metal layer, infrared polymer absorber, front metal contact, sensitive pyroelectric element, the interconnecting column and the bulk silicon readout. The results of the numerical modeling show that the thermal crosstalk between sensitive elements to be critical especially at low frequency (f < 10Hz) of periodically modulated light. It is also shown that the use of our models gives the possibility to improve the design, operating regimes and sensitivity of the device.

  • PDF

A D2D communication architecture under full control using SDN

  • Ngo, Thanh-Hai;Kim, Younghan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3435-3454
    • /
    • 2016
  • Device-to-device (D2D) communication is a potential solution to the incessant increase in data traffic on cellular networks. The greatest problem is how to control the interference between D2D users and cellular mobile users, and between D2D users themselves. This paper proposes a solution for this issue by putting the full control privilege in cellular network using the software-defined networking (SDN) concept. A software virtual switch called Open vSwitch and several components are integrated into mobile devices for data forwarding and radio resource mapping, whereas the control functions are executed in the cellular network via a SDN controller. This allows the network to assign radio resources for D2D communication directly, thus reducing interference. This solution also brings out many benefits, including resource efficiency, energy saving, topology flexibility, etc. The advantages and disadvantages of this architecture are analyzed by both a mathematical method and a simple implementation. The result shows that implementation of this solution in the next generation of cellular networks is feasible.

Structureal and dielectric properties of $(Pb_{x},Sr_{x-1})TiO_{3}$ thin film for tunable device application (Tunable 소자 응용을 위한 $(Pb_{x},Sr_{x-1})TiO_{3}$ 박막의 구조 및 유전특성)

  • Kim, Kyoung-Tae;Kim, Chang-Il;Lee, Sung-Gap
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.78-81
    • /
    • 2002
  • Ferroelectric thin film is a very attractive material for the tunable microwave device applications such as electronically tunable mixers, delay lines, filters and phase shifters. Thin films of $Pb_{x}Sr_{1-x}TiO3(PST)$ were fabricated onto Pt/Ti/SiO2/Si substrate by the sol-gel method. We have investigated the structural and dielectric properties of PST(50/50) thin films for tunable microwave device applications. The PST thin films show typical polycrystalline structure with a dense microstructure without secondary phase formation. Dielectric properties of PST films are strongly dependent on annealing temperature. The dielectric constants, loss and tunability of the PST (50/50) thin films were 404, 0.023 and 51.73 %, respectively.

  • PDF

Enhancement of Emission Efficiency of Multilayer White Light Organic Electroluminescent Device (다층구조를 적용한 백색 전계발광소자의 발광효율 향상)

  • Kim, Ju-Seung;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.27-31
    • /
    • 2001
  • We fabricated organic electroluminescent(EL) devices with mixed emitting layer of poly(N-vinylcarbazole)(PVK), 2,5-bis(5'-tert-butyl-2-benzoxazoly)thiophene(BBOT), N,N'-diphenyl-N,N'-(3-methyphenyl)-1,1'-biphenyl-4, 4'-diarnine(TPD) and poly(3-hexylthiophene)(P3HT). To improve the external quantum efficiency of EL devices, we added the functional layer to the devices such as LiF insulating layer, carrier confinement layer(BBOT) and hole injection layer(CuPc). In the ITO/emitting layer/Al device, the maximum quantum efficiency at 15V was $1.88{\times}10^{-5}%$. And then, it is increased by a factor of 27 to $5.2{\times}10^{-3}%$ in ITO/CuPc/emitting layer/BBOT/LiF/Al device at 15V.

  • PDF