• Title/Summary/Keyword: Electronic device

Search Result 4,550, Processing Time 0.035 seconds

New Graphene Electronic Device Structure for High Ion/Ioff Ratio

  • Jeong, Hyeon-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.112-112
    • /
    • 2012
  • Graphene has been considered as one of the potential post Si-materials due to its high mobility. [1] However, since graphene is semi-conductor with zero band gap, it is difficult to achieve high Ion/Ioff ratio, one of the most important requirements for commercial devices. There have been many attempts to open its band gap for high Ion/Ioff ratio, but most of them end up lowering the mobility. [2-5] Thus, we proposed and demonstrated a new device structure for graphene transistor based on one of the unique properties of graphene for high Ion/Ioff: using this approach, we were able to achieve the ratio over $10^5$. [6] Our device has several major advantages over previously proposed graphene based electronic devices. Since our device does not alter the given properties of graphene, such as opening the band gap, it has no fundamental issues on mobility degradations. In addition, our device is fully compatible with current Si technology and we were able to fabricate the devices with 6 inch wafer scale with CVD (Chemical Vapor Deposition) grown graphene. In this presentation, we will discuss about the details of our graphene device including the device structure and the detailed understanding of working mechanism. We will present device characteristics including I-V curves with $10^5$ on/off ratio. We will also present the performance of an inverter based on our devices. Finally, we will discuss the current issues and their potential solutions.

  • PDF

A study on the piezoelectric vibration device for mobile phone (이동통신 단말기용 압전 진동 장치에 관한 연구)

  • Yoo, J.S.;Kwon, O.D.;Yun, Y.J.;Kang, S.H.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.379-382
    • /
    • 2004
  • In this paper, it is investigated in advance about the PZT-based composition for piezoelectric vibration device. The specimens of piezoelectric ceramics are made of Columbite method. The piezoelectric vibration device by this composition is designed by ATILA(Magsoft) program used FEM(Finite Element Method). The vibration device used for mobile phone must be driven in the frequency of $130{\sim}200Hz$, so the resonant frequency of piezoelectricity must adjust driven frequency bandwidth. The result of analysis by ATILA is appeared dependant property of length, width, thickness and dummy weight about resonant frequency of the piezoelectric vibration device. The size of manufactured actuator is $28{\times}12{\times}0.3mm^3(length {\times}width{\times}thickness)$ and this is bimorph type. The test of manufactured piezoelectric vibration device measure displacement, acceleration and power dissipation. The piezoelectric vibration device has the advantage more than electro-magnetic motor, however the size of manufactured device is larger than electro-magnetic motor.

  • PDF

Resource Allocation Based on Interference Awareness for Device-to-Device Communication in Cellular Networks (셀룰러 네트워크에서 간섭 인지 기반의 단말간 직접 통신 자원할당 방법)

  • Yang, Mochan;Shin, Oh-Soon;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.557-559
    • /
    • 2014
  • We propose an efficient resource allocation scheme based on interference awareness for D2D (Device-to-Device) communication in cellular networks. Recently, many researchers have studied how to allocate frequency resources to DUE (D2D User Equipment) with full interference channel information. However, it is difficult to assume a scenario where instantaneous interference information between the CUE (Cellular UE) and DUE is known to the BS (Base Station). To tackle this problem, we proposed in this paper a new scheme in which the BS allocates a resource to CUE and DUE without a full channel information and can aware interference based on only transmit power and distance between UEs. Simulation results show effectiveness of the proposed scheme.

Feasibility Study for Device-to-Device Communications Using Unlicensed Bands in a Cellular Network (셀룰러 네트워크에서 비면허 대역을 활용한 단말 간 직접통신 타당성 연구)

  • Kim, Hyeon-Min;Kang, Gil-Mo;Shin, Oh-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.208-211
    • /
    • 2016
  • Device-to-Device communication(D2D) enables devices in proximity to communicate directly without going through the network infrastructure. In particular, D2D communications in a cellular network can improve the spectral efficiency by allowing the reuse of cellular resources. However, it is not easy to maintain the channel quality of the D2D links and to protect the cellular links from the D2D interferences, since the resource allocations for the cellular users will change with time due to the time-varying nature of the cellular channels. To mitigate the performance degradation of D2D links, we propose to exploit unlicensed bands as auxiliary resources when the D2D links share the uplink cellular resources. The effectiveness of the proposed scheme is verified through simulations.

Optimization of Double Gate Vertical Channel Tunneling Field Effect Transistor (DVTFET) with Dielectric Sidewall

  • WANG, XIANGYU;Cho, Wonhee;Baac, Hyoung Won;Seo, Dongsun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.192-198
    • /
    • 2017
  • In this paper, we propose a novel double gate vertical channel tunneling field effect transistor (DVTFET) with a dielectric sidewall and optimization characteristics. The dielectric sidewall is applied to the gate region to reduced ambipolar voltage ($V_{amb}$) and double gate structure is applied to improve on-current ($I_{ON}$) and subthreshold swing (SS). We discussed the fin width ($W_S$), body doping concentration, sidewall width ($W_{side}$), drain and gate underlap distance ($X_d$), source doping distance ($X_S$) and pocket doping length ($X_P$) of DVTFET. Each of device performance is investigated with various device parameter variations. To maximize device performance, we apply the optimum values obtained in the above discussion of a optimization simulation. The optimum results are steep SS of 32.6 mV/dec, high $I_{ON}$ of $1.2{\times}10^{-3}A/{\mu}m$ and low $V_{amb}$ of -2.0 V.

Design of Synchronization_Word Generator in a Bluetooth System (블루투스 동기워드 생성기의 구현)

  • Hwang, Sun-Won;Cho, Sung;Ahn, Jin-Woo;Lee, Sang-Hoon;Kim, Seong-Jeen
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.214-217
    • /
    • 2003
  • In this paper, we deal with implementing design for a correlator access code generator module which they are used for setting up a connection between units, a packet decision, a clock syncronization, by FPGA. The orrelator module which is composed of the Wallace Tree's CSA and threshold value decision device decides useful a packet and syncronizes a clock, after it correlates an input signal of 1 Mbps transmission rate by a sliding window. An access code generator module which is composed of a BCH (Bose-Chadhuri-Hocquenghem) cyclic encoder and control device was designed according as a four steps' generation process proposed in the bluetooth standard. The pseudo random sequence which solves syncronization problem saved a voluntary device Proposed the module was designed by VHDL. An simulation and test are inspected by Xilinx FPGA.

  • PDF

Reliability Enhancement of Hybrid Superconducting Fault Current Limiter adopting Power Electric Device (전력용 반도체 소자를 적용한 하이브리드 초전도 한류기 동작 신뢰도 향상)

  • Sim, J.;Park, K.B.;Lim, S.W.;Kim, H.R.;Lee, B.W.;Oh, I.S.;Hyun, O.B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.57-61
    • /
    • 2007
  • The current limiting characteristics of hybrid SFCL with additional power electronic devices was investigated in order to improve operation reliabilities. The hybrid SFCL developed consists of a superconducting trigger (S/T) part, a fast switch (F/S) module and a current limiting (C/L) part. Although hybrid SFCL had shown a excellent current limiting characteristics, this device was rather vulnerable to the residual arc currents which could exist during fast switch operation. This undesirable arc should be extinguished as quickly as possible in order to implement perfect fault current commutation. So, in order to eliminate the residual arcs between fast switch contacts, the power electronic devices (IGBT or GTO) were connected in series between the S/T part and the interrupter of the F/S module. According to the fault tests conducting with an input voltage of $270\;V_{rms}$ and a fault current of $5\;kA_{rms}$, The power electronic devices could perfectly remove the arc generated between the contacts of the interrupter within 4 ms after the fault occurred. From the test analysis, it was confirmed that the hybrid SFCL could enhance the operation reliability by adopting additional power electronic devices.

A Study on the Analysis of Fire Mechanisms in Electronic Products due to Failure and Malfunction of Thermostats Through Fire Cases and Reproduction Experiments (화재사례 및 재현실험을 통한 온도조절장치 고장 및 오동작으로 인한 전자제품 화재 메커니즘 분석)

  • Jeong-il Lee;Jong-Hwa Im
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this paper, as there are many cases of fires occurring due to the failure or inoperability of the thermostat of electronic products, the purpose is to test and analyze the risks and probabilities through fire cases and reproduction experiments, and suggest countermeasures. Among electronic products, water purifiers are composed of a refrigerant system with a compressor to make cold water, a heating device to make hot water, and an electric device used as an energy source. Due to the nature of the water purifier manufacturing, these devices are subject to a lot of moisture and dust. etc. exist in large quantities and use electrical energy, so there is a possibility of fire due to short circuit in the wire, electrical abnormal overheating (tracking phenomenon) in the thermostat, electronic board, starting relay, etc., and overheating of the heating device (Band Heater). there is. Therefore, in order to prevent fires from these devices, a system to remove foreign substances inside the water purifier is necessary, the use of heat-resistant (fire-resistant) wires for electrical devices is essential, and the use of non-combustible materials (semi-combustible materials) for each part is necessary to prevent fire. The risk must be eliminated through prevention and combustion expansion prevention devices.

Eco-friendly Ceramic Materials for Shear Mode Piezoelectric Energy Harvesting (전단 모드 압전 에너지 하베스팅용 친환경 세라믹 소재)

  • Han, Seung-Ho;Park, Hwi-Yeol;Kang, Hyung-Won;Lee, Hyeung-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.9
    • /
    • pp.702-710
    • /
    • 2012
  • Eco-friendly $(Na,K)NbO_3$ (NKN)-based piezoelectric ceramic materials were fabricated by conventional ceramic method for shear mode piezoelectric energy harvesting application. $NKN-LiTaO_3$ (LT) based compositions were adopted for the high $d_{15}{\times}g_{15}$ which is proportional to harvested energy density. The composition $0.935(Na_{0.535}K_{0.485})NbO_3-0.065LiTaO_3$ was found to be lie on the boundary of tetragonal and orthorhombic phases. With reducing Ta content, the dielectric constant decreased gradually while maintaining high $d_{15}$, which resulted in increased $d_{15}{\times}g_{15}$. The composition $0.935(Na_{0.535}K_{0.485})NbO_3-0.065Li(Nb_{0.990}Ta_{0.010})O_3$ was found to possess excellent piezoelectric and electromechanical properties ($d_{15}{\times}g_{15}=29\;pm^2/N$, $d_{15}$ = 417 pC/N, $k_{15}$ = 0.55), and high curie temperature ($T_c=455^{\circ}C$).

Review of Failure Mechanisms on the Semiconductor Devices under Electromagnetic Pulses (고출력전자기파에 의한 반도체부품의 고장메커니즘 고찰)

  • Kim, Dongshin;Koo, Yong-Sung;Kim, Ju-Hee;Kang, Soyeon;Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.37-43
    • /
    • 2017
  • This review investigates the basic principle of physical interactions and failure mechanisms introduced in the materials and inner parts of semiconducting components under electromagnetic pulses (EMPs). The transfer process of EMPs at the semiconducting component level can be explained based on three layer structures (air, dielectric, and conductor layers). The theoretically absorbed energy can be predicted by the complex reflection coefficient. The main failure mechanisms of semiconductor components are also described based on the Joule heating energy generated by the coupling between materials and the applied EMPs. Breakdown of the P-N junction, burnout of the circuit pattern in the semiconductor chip, and damage to connecting wires between the lead frame and semiconducting chips can result from dielectric heating and eddy current loss due to electric and magnetic fields. To summarize, the EMPs transferred to the semiconductor components interact with the chip material in a semiconductor, and dipolar polarization and ionic conduction happen at the same time. Destruction of the P-N junction can result from excessive reverse voltage. Further EMP research at the semiconducting component level is needed to improve the reliability and susceptibility of electric and electronic systems.