• Title/Summary/Keyword: Electronic and thermal properties

Search Result 1,073, Processing Time 0.035 seconds

Effects of Interlayer Formation and Thermal Treatment on Field-emission Properties of Carbon Nanotube Micro-tips (계면층 형성 및 열처리가 탄소 나노튜브 미세팁의 전계방출 특성에 미치는 영향)

  • Kim, Bu-Jong;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • The effects of interlayer formation and thermal treatment on the field-emission properties of carbon nanotubes (CNTs) were investigated. The CNTs were prepared on tungsten (W) micro-tip substrates using the electrophoretic deposition (EPD) method. The interlayers, such as aluminum (Al) and hafnium (Hf) were coated on the W-tips prior to CNT deposition and after the deposition of CNTs all the species were thermally treated at $700^{\circ}C$ for 30 min. The field-emission properties of CNTs were significantly improved by thermal treatment. The threshold electric field for igniting the electron emission was decreased and the emission current was increased. The Raman spectroscopy results indicated that this was attributed mainly to the enhancement of CNTs by thermal treatment. Also, the CNTs deposited on the interlayers showed the remarkably improved results in the long-term emission stability, especially when they were thermally treated. The X-ray photoelectron spectroscopy (XPS) measurement confirmed that this was resulted from the formation of the additional cohesive forces between the CNTs and the underlying interlayers.

Thermal evaporation을 이용해 성장 온도에 따른 ZnO nanorod의 특성

  • Lee, Hye-Ji;Kim, Dong-Yeong;Kim, Ji-Hwan;Kim, Hae-Jin;Son, Seon-Yeong;Kim, Jong-Jae;Kim, Hwa-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.25-25
    • /
    • 2009
  • Zinc Oxide (ZnO) nanorod were grown on Si wafer by a thermal evaporation method at various temperatures. And their structure and optical properties were measured using Photoluminescence(PL), Scanning electron microscopy(SEM), and X-ray diffraction(XRD) analysis.

  • PDF

Effects of Post Cure Conditions on Thermal Characteristics of A1$_2$O$_3$ Filled Epoxy Resin Composite System (A1$_2$O$_3$ 충전된 에폭시 수지 복합재료계의 후기 경화조건에 따른 열적특성)

  • Cho, Young-Shin;Shim, Mi-Ja;Kim, Sang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.227-230
    • /
    • 1998
  • The effects of post curing conditions on thermal properties of alumina filled epoxy resin system DGEBA/MDA/SN were investigated. As the post curing time increased at 15$0^{\circ}C$, the glass transition temperature increased from 121 to 124, slightly. As the heating rate increased, high thermal decomposing temperature (T$_{d}$) and most decomposing temperature (T$_{p}$) increased. For the case of post-cured system at 15$0^{\circ}C$ for 4 days showed lower values than virgin system. At the post curing condition the system must have been thermally degraded.ded.

  • PDF

Effect of Organically Modified Layered Silicate on Thermal, Mechanical, and Electrical Properties of Epoxy-Based Nanocomposites

  • Park, Jae-Jun;Kwon, Soon-Seok;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.135-139
    • /
    • 2011
  • In an effort to develop new electrical insulation materials, four different kinds of organically modified layered silicate were incorporated into an epoxy matrix to prepare nanocomposites for electrical insulation. Five wt% of organically modified layered silicates were processed in a planetary centrifugal mixer in an epoxy matrix, and the thermal, mechanical, and electrical properties of the cured epoxy/layered silicate were investigated. The morphology of the nanoscale silicate dispersed in the epoxy matrix was observed using transmission electron microscopy, and the interlayer distance was measured by wide-angle X-ray scattering diffraction analysis.

Influence of RTA treatments on optical properties of ZnO nanorods synthesized by wet chemical method

  • Shan, Qi;Ko, Y.H.;Lee, H.K.;Yu, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.190-190
    • /
    • 2010
  • Zinc oxide is the most attractive material due to the large direct band gap (3.37 eV), excellent chemical and thermal stability, and large exciton binding energy (60 meV). Recently, ZnO nanorods were used as the high efficient antireflection coating layer of solar cells based on silicon (Si). In this reports, we studied the effects of rapid thermal annealing (RTA) treatment on optical properties of ZnO nanorods. For fabrication of ZnO nanorods, there are many methods such as hydrothermal method, sol-gel method, and metal organic chemical vapor deposition method. Among of them, we used the conventional wet chemical method which is simple and low temperature growth. In order to synthesize the ZnO nanorods, the ZnO films were deposited on Si substrate by RF magnetron sputtering at room temperature and the samples were dipped to aqua solution containing the zinc nitrate and hexamethylentetramines (HMT). The synthesis process was achieved in keeping with temperature of $90-95^{\circ}C$ and under constant stirring. The morphology of ZnO nanorods on glass and Si was characterized by scanning electron microscopy. For the analysis of antireflection performance, the reflectance and transmittance were measured by spectrophotometer. And for analyzing the effects of RTA treatment on ZnO nanorods, crystalline properties were investigated by X-ray diffraction measurements and optical properties was estimated by photoluminescence spectra.

  • PDF

Electrical properties of PZT thin films deposited on corning glass substrates (Corning glass 기판위에 증착된 PZT 박막의 전기적 특성)

  • Ju, Pil-Yeon;Jeong, Kyu-Won;Park, Young;Kim, Hong-Joo;Park, Ki-Yup;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.263-266
    • /
    • 2000
  • Effects of excess Pb(50 mole %) on the crystallization properties of amorphous PZT thin films on the glass substrates by post-annealing in oxygen ambient were investigated to lower the crystallization temperature of the PZT thin films with a single perovskite phase. The PZT thin films(350nm) were prepared on Pt/Ti/corning glass(1737) substrates. The PZT thin films and bottom electrode were deposited by RF magnetron sputtering. Crystallization properties of PZT thin films were strongly dependent on RTA(Rapid Thermal Annealing) temperature. We were able to obtain a perovskite structure of PZT at 600$^{\circ}C$ for 10min. After thermal treatments were done, electrical properties such as I-V, P-E, and fatigue were measured.

  • PDF

Thermal properties and mechanical properties of dielectric materials for thermal imprint lithography

  • Kwak, Jeon-Bok;Cho, Jae-Choon;Ra, Seung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.242-242
    • /
    • 2006
  • Increasingly complex tasks are performed by computers or cellular phone, requiring more and more memory capacity as well as faster and faster processing speeds. This leads to a constant need to develop more highly integrated circuit systems. Therefore, there have been numerous studies by many engineers investigating circuit patterning. In particular, PCB including module/package substrates such as FCB (Flip Chip Board) has been developed toward being low profile, low power and multi-functionalized due to the demands on miniaturization, increasing functional density of the boards and higher performances of the electric devices. Imprint lithography have received significant attention due to an alternative technology for photolithography on such devices. The imprint technique. is one of promising candidates, especially due to the fact that the expected resolution limits are far beyond the requirements of the PCB industry in the near future. For applying imprint lithography to FCB, it is very important to control thermal properties and mechanical properties of dielectric materials. These properties are very dependent on epoxy resin, curing agent, accelerator, filler and curing degree(%) of dielectric materials. In this work, the epoxy composites filled with silica fillers and cured with various accelerators having various curing degree(%) were prepared. The characterization of the thermal and mechanical properties wasperformed by thermal mechanical analysis (TMA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), rheometer, an universal test machine (UTM).

  • PDF

A Study on the Thermal and Electrical Properties of Fabricated Mo-Cu Alloy by Spark Plasma Sintering Method (방전 플라즈마 소결법으로 제작한 Mo-Cu 합금의 열적, 전기적 특성)

  • Lee, Han-Chan;Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1600-1604
    • /
    • 2017
  • Mo-Cu alloys have been widely used for heat sink materials, vacuum technology, automobile and many other applications due to their excellent physical and electronic properties. Especially, Mo-Cu composites with 5~20 wt% copper are widely used for the heavy duty service contacts due to their excellent properties like low coefficient of thermal expansion, wear resistance, high temperature strength and prominent electrical and thermal conductivity. In most of the applications, high dense Mo-Cu materials with homogeneous microstructure are required for high performance, which has led in turn to attempts to prepare ultra-fine and well-dispersed Mo-Cu powders in different ways, such as spray drying and reduction process, electroless plating technique, mechanical alloying process and gelatification-reduction process. However, most of these methods were accomplished at high temperature (typically degree), resulting in undesirable growth of large Cu phases; furthermore, these methods usually require complicated experimental facilities and procedure. In this study, Mo-Cu alloying were prepared by planetary ball milling (PBM) and spark plasma sintering (SPS) and the effect of Cu with contents of 5~20 wt% on the microstructure and properties of Mo-Cu alloy has been investigated.

Thermal Properties and Refractive Index of $B_2O_3-Al_2O_3-SiO_2$ Glasses for Photolithographic Process of Barrier Ribs in PDP (PDP의 격벽 형성 공정인 감광성 공법에서 $B_2O_3-Al_2O_3-SiO_2$계 유리 조성의 열적 특성과 굴절률 변화)

  • Hwang, Seong-Jin;Won, Ju-Yeon;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.321-321
    • /
    • 2008
  • To obtaingood resolution in PDP, one of the important factors is to achieve the accuracy of barrier ribs. The photolithographic process can be used to form patterns of barrier rib with high accuracy and a high aspect ratio. The composition for photolithography is based on the $B_2O_3-SiO_2-Al_2O_3$ glass system including additives such as alkali oxides and alkali earth oxides. The refractive index and thermal properties in glass system are changed by amount of alkali oxides and alkali earth oxides. Therefore, it is important that additives are controlled to have proper refractive index and thermal properties. The additives are contributed to non-bridging oxygen within the glass network, causing a change of density. In addition to a change of the structural cross-link density, the refractive index, dielectric and thermal properties glass are correlated with ionic radius and polarizability of cations. In this study, we investigated the refractive index and the thermal properties such as glass transition temperature, glass softening temperature and coefficient of thermal expansion by changing composition in the $B_2O_3-SiO_2-Al_2O_3$ glass system.

  • PDF