• Title/Summary/Keyword: Electronic Sensor

Search Result 3,211, Processing Time 0.028 seconds

Design of electronic tongue using IEEE 1451.2 (IEEE 1451.2를 이용한 전자혀 설계)

  • Kim, Dong-Jin;Kim, Jeong-Do;Jung, Woo-Suk;Lee, Jung-Hwan;Kim, Myung-Guy;Yoon, Chul-Oh
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.150-158
    • /
    • 2007
  • The IEEE 1451 publication are available, this standard defines interface between sensor and processor, and plug and play in processor is possible. Also, Intelligence of sensor was possible because sensor includes transducer electronic data sheet (TEDS). In IEEE 1451 standards, IEEE 1451.4 is suitable standard in single sensor, and IEEE 1451.2 is suitable standard in multi-sensors (array sensor). In this paper, apply IEEE 1451 to electronic tongue system. In the case of electronic tongue system, because array sensor is used, it is that complex and difficult to apply IEEE 1451.4 that is standard for single sensor. In this paper, apply IEEE 1451.2 for array sensor to design of electronic tongue system. Communication interface method of IEEE 1451.2 for electronic tongue system is presented, and implemented TEDS of electronic tongue system.

Fabrication and Characteristics of Multi-functional Sensor System (다기능 센서 시스템의 제작 및 동작 특성)

  • Jung, Jae-Eop;Lee, Hyo-Ung;Lee, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.368-371
    • /
    • 2003
  • The humidity sensors with a stable characteristics and gas sensors operating at room temperature have been fabricated, and a multi-functional sensor system which has gas sensor, humidity sensor, temperature sensor and control circuit has been applied to the microwave oven system. For a suitable cooking state, the humidity sensors was more applicable to heating and defrosting condition than gas sensors, however, the dynamic characteristics of gas sensors were obtained in the easy burning food such as pop corn.

  • PDF

Study of Sensor Fusion for Attitude Control of a Quad-rotor (쿼드로터 자세제어를 위한 센서융합 연구)

  • Yu, Dong-Hyeon;Lim, Dae Young;Sel, Nam O;Park, Jong Ho;Chong, Kil to
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.453-458
    • /
    • 2015
  • We presented a quad-rotor controlling algorithm design by using sensor fusion in this paper. The controller design technique was performed by a PD controller with a Kalman filter and compensation algorithm for increasing the stability and reliability of the quad-rotor attitude. In this paper, we propose an attitude estimation algorithm for quad-rotor based sensor fusion by using the Kalman filter. For this reason, firstly, we studied the platform configuration and principle of the quad-rotor. Secondly, the bias errors of a gyro sensor, acceleration and geomagnetic sensor are compensated. The measured values of each sensor are then fused via a Kalman filter. Finally, the performance of the proposed algorithm is evaluated through experimental data of attitude estimation. As a result, the proposed sensor fusion algorithm showed superior attitude estimation performance, and also proved that robust attitude estimation is possible even in disturbance.

Fabrication and Evaluation of a Flexible Piezoelectric Impact Force Sensor for Electronic Mitt Application (전자 미트 응용을 위한 유연 압전 충격 센서의 제조와 특성 평가)

  • Na, Yong-hyeon;Lee, Min-seon;Cho, Jeong-ho;Paik, Jong-hoo;Lee, Jung Woo;Park, Youngjun;Jeong, Young Hun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.106-112
    • /
    • 2019
  • Flexible impact force sensors composed of piezoelectric PZT/PDMS composite sandwiched between Al/PET films were fabricated and their voltage signal characteristics were evaluated under varying impact forces for electronic mitt applications. The piezoelectric impact force sensor on an ethylene-vinyl acetate (EVA) substrate exhibited an output voltage difference of no greater than 40 mV a periodical impact test in with the impact load was increased by as much as 240 N by a restoration time of 5 s in a five-time experiment, implying good sensing ability. Moreover, the impact force sensor embedded four electronic mitts showed a reliable sensitivity of less than 1 mV/N and good repeatability under 100 N-impact force during a cycle test executed 10,000 times. This indicated that the fabricated flexible piezoelectric impact sensor could be used in electronic mitt applications. However, the relatively low elastic limit of substrate material such as EVA or poly-urethane slightly deteriorated the sensitivity of the impact sensor embedded electronic mitt at over 200 N-impact forces.

The Design and Experiment of a Planar Patch Sensor for Partial Discharge Diagnostics in 6.6 kV Rotating Machine Stator Windings

  • Yang, Sang-Hyun;Park, Noh-Joon;Park, Dae-Hee;Kim, Hee-Dong;Lim, Kwang-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.173-176
    • /
    • 2009
  • In the stator windings of a 6.6 kV rotating machine, internal discharges, slot discharges, and surface discharges are mainly caused by internal voids and insulation degradation. If a partial discharge(PD) occurs in an inner-part of the stator windings, it will cause electromagnetic pulses with wide frequency ranges. Discharge sparks and electromagnetic pulses generated from a discharge source, can be detected using various RF resonators like an EM sensor. In order to detect these types of electromagnetic sources, a planar patch sensor was designed and fabricated using a CST-MWS simulation, and PD signals from an artificially defected stator winding were also measured by the sensor proposed in this study. Furthermore, an HFCT was used as a reference sensor and compared with the proposed new planar patch sensor. In the results of the experiment, the planar patch sensor showed a similar performance to the HFCT sensor.

Gas sensing characteristics of carbon nanotube gas sensor using a diaphragm structure (다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 가스 감응 특성)

  • Cho, Woo-Sung;Moon, Seung-Il;Kim, Young-Cho;Park, Jung-Ho;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • The micro-gas sensor based on carbon nanotubes (CNTs) was fabricated and its gas sensing characteristics on nitrogen dioxide ($NO_{2}$) have been investigated. The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_{2}$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

Multifunctional Fire Sensor Fabricated on a Flexible Substrate (플렉서블 기판상에 제작한 다기능 화재센서에 관한 연구)

  • Seo, JoonYoung;Ko, Dongwan;Choi, Junseck;Noh, JaeHa;Jung, Jung-Yeul;Lee, MoonJin;Lee, Sangtae;Chang, Jiho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2020
  • An integrated multifunctional sensor, capable of raising an early electric-fire warning, was fabricated. An arc-light, temperature, and humidity sensor was fabricated on a flexible substrate using a printed thin film of indium tin oxide. A polyethylene terephthalate (PET) substrate was used as the flexible substrate. The sensor was fabricated on a PET substrate, and its operating characteristics were tested. The operating performances of the sensor when serving as an arc-light, a temperature, and a humidity sensor were estimated to be 0.6247 Ω/W, 80.6 Ω/K, and -4.08 Ω/RH, respectively. The feasibility of the proposed fire sensor was demonstrated; it costs low and offers multiple functionalities.

Proposal for a Wavelength-Independent Optical Sensor Based on an Asymmetric Mach-Zehnder Interferometer

  • Luo, Yanxia;Yin, Rui;Ji, Wei;Huang, Qingjie;Gong, Zisu;Li, Jingyao
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.558-565
    • /
    • 2020
  • A wavelength-independent optical sensor based on an asymmetric Mach-Zehnder interferometer (AMZI) is proposed. The optical sensor based on an AMZI is very sensitive to wavelength, and wavelength drift will lead to measurement error. The optical sensor is compensated to reduce its dependence on wavelength. The insensitivity of the optical sensor to wavelength mainly depends on the compensation structure, which is composed of an AMZI cascaded with another AMZI and can compensate the wavelength drift. The influence of wavelength drift on the optical sensor can be counteracted by carefully designing the size parameters of the compensation structure. When the wavelength changes from 1549.9 nm to 1550.1 nm, the error after compensation can be lower than 0.066%. Furthermore, the effect of fabrication tolerance on compensation results is analyzed. The proposed compensation method can also be used to compensate the drift of other parameters such as temperature, and can be applied to the compensation of other interference-based optical devices.

CMOS Binary Image Sensor Using Double-Tail Comparator with High-Speed and Low-Power Consumption

  • Kwen, Hyeunwoo;Jang, Junyoung;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.82-87
    • /
    • 2021
  • In this paper, we propose a high-speed, low-power complementary metal-oxide semiconductor (CMOS) binary image sensor featuring a gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector based on a double-tail comparator. The GBT photodetector forms a structure in which the floating gate (n+ polysilicon) and body of the PMOSFET are tied, and amplifies the photocurrent generated by incident light. The double-tail comparator compares the output signal of a pixel against a reference voltage and returns a binary signal, and it exhibits improved power consumption and processing speed compared with those of a conventional two-stage comparator. The proposed sensor has the advantages of a high signal processing speed and low power consumption. The proposed CMOS binary image sensor was designed and fabricated using a standard 0.18 ㎛ CMOS process.

Research on Capacitive Tactile Sensor for Electronic Skin using Natural Rubber and Nitrile Butadiene Rubber

  • Sangmin Ko;Dasom Park;Sangkyun Kim
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.173-178
    • /
    • 2023
  • Recently, there has been a significant focus on the development of flexible and stretchable sensors, driven by advancements in electronic devices and the robotics industry. Among these sensors, tactile sensors stand out as the most actively researched, playing a crucial role in facilitating interaction between humans and electronic devices, particularly in robotics and medical applications. This study specifically involves the manufacturing of a capacitive tactile sensor using a relatively straightforward process and sensor structure. Natural rubber and Nitrile butadiene rubber, commonly employed in the rubber industry, were utilized. The dielectric material in the manufactured tactile sensor possesses a porous structure. Notably, the resulting tactile sensor demonstrated excellent sensitivity, approximately 1%/kPa, and exhibited the capability to detect pressures up to 212 kPa.