• Title/Summary/Keyword: Electronic Scan

Search Result 260, Processing Time 0.023 seconds

Low power scan testing and efficient test data compression for System-On-a-Chip

  • Jung, Jun-Mo;Chong, Jong-Wha
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.228-230
    • /
    • 2002
  • We present a new low power scan testing and test data compression method for System-On-a-Chip (SOC). The don't cares in unspecified scan vectors are mapped to binary values for low power and encoded by adaptive encoding method for higher compression. Also, the scan-in direction of scan vectors is determined for low power. Experimental results for full-scanned versions of ISCAS 89 benchmark circuits show that the proposed method has both low power and higher compression.

  • PDF

An Effective Multiple Transition Pattern Generation Method for Signal Integrity Test on Interconnections (Signal Integrity 연결선 테스트용 다중천이 패턴 생성방안)

  • Kim, Yong-Joon;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.39-44
    • /
    • 2008
  • Scan architecture is very effective design-for-testability technique that is widely used for high testability, however, it requires so much test time due to test vector shifting time. In this paper, an efficient scan test method is presented that is based on the Illinois scan architecture. The proposed method maximizes the common input effect via a scan chain selection scheme. Experimental results show the proposed method requires very short test time and small data volume by increasing the efficiency of common input effect.

Radar identification by scan period validation (스캔주기 유효성 판별에 의한 레이더 식별)

  • Kim, Gwan-Tae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Radar signal analysis of electronic warfare is a technique for identifying a radar type by signal parameters(direction, radion frequency, pulse repetition interval, pulse width, scan period..) extracted from a received radar pulse. However as the modern radar and new threat environments is advanced, radar identification ambiguity arises in the process of identifying the types of radars. In this paper, we analyze the problems of the existing method and propose a new method. This technique determines the validity of the scan period by the difference in the arrival time of the radar pulse and the minimum number of scan period discrimination. Experiments proved that the scan cycle results are derived regardless of the RMS((Root Mean Square) of the input amplitude.

An Ultrasonic NDT System using Modified A-scan Method (A-scan 방식을 응용한 초음파 비파괴 검사 장치)

  • Kim, Kun; Seo, Ho-seon;Cha, Il-whan
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1985.10a
    • /
    • pp.47-49
    • /
    • 1985
  • In most of ultrasonic NDT(Non-Destructive Testing) equipments using A-scan display technic, it is one of the inconveniences that the user must be proficient in reading the displayed signals for the accurate decisions. In this study, a simple microprocessorized NDT machine for the flaw detection was developed. The operation of system is based on the conventional NDT system. The microprocessor detects the time delay between transmitted pulse and echos by counter-measure method. Then according to the scanning position, the location of flaw orthe other side of testing object is plotted on the CRT. The main advantages of the developed system are simplicity in handling, recording capability of measured data, and low cost.

  • PDF

A FAST PARTIAL DISTORTION ELIMINATION ALGORITHM USING IMPROVED SUB-BLOCK MATCHING SCAN

  • Kim, Jong-Nam;Ryu, Tae-Kyung;Moon, Kwang-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.278-281
    • /
    • 2009
  • In this paper, we propose a fast partial distortion algorithm using normalized dithering matching scan to get uniform distribution of partial distortion which can reduce only unnecessary computation significantly. Our algorithm is based on normalized dithering order matching scan and calibration of threshold error using LOG value for each sub-block continuously for efficient elimination of unlike candidate blocks while keeping the same prediction quality compared with the full search algorithm. Our algorithm reduces about 60% of computations for block matching error compared with conventional PDE (partial distortion elimination) algorithm without any prediction quality, and our algorithm will be useful to real-time video coding applications using MPEG-4 AVC or MPEG-2.

  • PDF

Path Delay Testing for Micropipeline Circuits (마이크로파이프라인 회로를 위한 지연 고장 테스트)

  • Kang, Yong-Seok;Huh, Kyung-Hoi;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.72-84
    • /
    • 2001
  • The timings of all computational elements in the micropipeline circuits are important. The previous researches on path delay testing using scan methods make little account of the characteristic of the path delay tests that the second test pattern must be more controllable. In this paper, a new scan latch is proposed which is suitable to path delay testing of the micropipelines and has small area overhead. Results show that path delay faults in the micropipeline circuits using the new scan are testable robustly and the fault coverage is higher than the previous researches. In addition, the new scan latch for path delay faults testing in the micropipeline circuits can be easily expanded to the applications such as BIST for stuck-at faults.

  • PDF

A Study on the Control Characteristics of Line Scan Light Source for Machine Vision Line Scan Camera (머신 비전 라인 스캔 카메라를 위한 라인 스캔 광원의 제어 특성에 관한 연구)

  • Kim, Tae-Hwa;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.371-381
    • /
    • 2021
  • A machine vision inspection system consists of a camera, optics, illumination, and image acquisition system. Especially a scanning system has to be made to measure a large inspection area. Therefore, a machine vision line scan camera needs a line scan light source. A line scan light source should have a high light intensity and a uniform intensity distribution. In this paper, an offset calibration and slope calibration methods are introduced to obtain a uniform light intensity profile. Offset calibration method is to remove the deviation of light intensity among channels through adding intensity difference. Slope calibration is to remove variation of light intensity slope according to the control step among channels through multiplying slope difference. We can obtain an improved light intensity profile through applying offset and slope calibration simultaneously. The proposed method can help to obtain clearer image with a high precision in a machine vision inspection system.

Radarsat-1 ScanSAR Quick-look Signal Processing and Demonstration Using SPECAN Algorithm (SPECAN 알고리즘을 이용한 Radatsat-1 ScanSAR Quick-look 신호 처리 및 검증 알고리즘 구현)

  • Song, Jung-Hwan;Lee, Woo-Kyung;Kim, Dong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.75-86
    • /
    • 2010
  • As the performance of the spaceborne SAR has been dramatically enhanced and demonstrated through advanced missions such as TerraSAR and LRO(Lunar Reconnaissance Orbiter), the need for highly sophisticated and efficient SAR processor is also highlighted. In Korea, the activity of SAR researches has been mainly concerned with SAR image applications and the current SAR raw data studies are mostly limited to stripmap mode cases. The first Korean spaceborne SAR is scheduled to be operational from 2010 and expected to deliver vast amount of SAR raw data acquired from multiple operational scenarios including ScanSAR mode. Hence there will be an increasing demand to implement ground processing systems that enable to analyze the acquired ScanSAR data and generate corresponding images. In this paper, we have developed an efficient ScanSAR processor that can be directly applied to spaceborne ScanSAR mode data. The SPECAN(Spectrum Analysis) algorithm is employed for this purpose and its performance is verified through RADARSAT-1 ScanSAR raw data taken over Korean peninsular. An efficient quick-look processing is carried out to produce a wide-swath SAR image and compared with the conventional RDA processing case.

Modeling of Received Radar Signals for Scan Pattern Analysis (스캔패턴 분석을 위한 레이더 수신신호 모델링)

  • Kim, Yong-Hee;Kim, Wan-Jin;Song, Kyu-Ha;Lee, Dong-Won;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.73-85
    • /
    • 2010
  • In dense electronic warfare signal environments, the conventional radar identification methods based on the basic parameters such as frequency, pulse width, and pulse repetition interval are confronted by the problem of identification ambiguity. To overcome this critical problem, a new approach introducing scan pattern of radars has been presented. Researches on new identification methods, however, suffer from a practical problem that it is not easy to secure the many radar signals including various scan pattern information and operation parameters. This paper presents a modeling method of radar signals with which we can generate radar signals including various scan pattern types according to the parameters determining the variation pattern of received signal strength. In addition, with the radar signals generated by the proposed model we analyze their characteristics according to the location of an electronic warfare support (ES) system.