• Title/Summary/Keyword: Electronic Device Alignment System

Search Result 10, Processing Time 0.03 seconds

Research of Liquid Crystal Alignment on Tantalum Oxide by Using Ion Beam Irradiation (이온빔 조사를 사용한 탄탈륨 산화막에서의 액정 배향에 대한 조사)

  • Lim, Ji-Hun;Oh, Byeong-Yun;Lee, Won-Kyu;Lee, Kang-Min;Na, Hyun-Jae;Park, Hong-Kyu;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.300-300
    • /
    • 2008
  • In this study, the advanced DuoPIGatron-type ion beam (IB) system was applied to inorganic thin film for aligning liquid crystal (LC). LC alignment on $Ta_2O_5$ via IB irradiation was embodied. As a result of IB irradiation, the homogeneously aligned liquid crystal display (LCD) on $Ta_2O_5$ was observed with low pretilt angles. The $Ta_2O_5$ were deposited on indium-tin-oxide coated Coming 1737 glass substrates by rf magnetron sputtering at $200^{\circ}C$. The deposition process resulted in forming very uniform thin film on glass substrates without any defects. To confirm the application of the inorganic alignment on modem display optical devices, we fabricated twisted nematic LCD and measured optical property and response time. As a result of the experiment, the electro optical characteristics of the LCD fabricated by using IB irradiation on $Ta_2O_5$ alignment layer were similar with the other LCD fabricated by using rubbing process.

  • PDF

A Study on Optimal Operation Conditions for an Electronic Device Alignment System by Using Design of Experiments (실험계획법을 이용한 전자부품 위치정렬장치 최적 운영조건 사례연구)

  • Lee, Dong Heon;Lee, Mi Lim;Bae, Suk Joo
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.453-466
    • /
    • 2015
  • Purpose: The purpose of this study is to design a systematic method to estimate optimal operation conditions of design variables for an electronic device alignment system. Method: The 2-level factorial design and the central composite design are used in order to plan experiments. Based on the experiment results, a regression model is established to find optimal conditions for the design variables. Results: 3 of 5 design variables are selected as major factors that affect the alignment system significantly. The optimized condition for each variable is estimated by using a sequential experiment plan and a quadratic regression model. Conclusion: The method designed in this study provides an efficient and systematic plan to select the optimized operation condition for the design variables. The method is expected to improve inspection accuracy of the system and reduce the development cost and period.

Interference Mitigation Scheme for Device-to-Device MIMO Communications Underlaying a Cellular Network

  • Nam, Yujin;So, Jaewoo;Kim, Jinsung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1841-1865
    • /
    • 2017
  • This paper proposes a new interference mitigation scheme for device-to-device (D2D) communications underlaying a cellular network. The object of the proposed scheme is to determine the number of data streams, a precoding matrix, and a decoding matrix of D2D networks so as to maximize the system capacity given the number of data streams of a cellular network while satisfying the constraint of the inter-system interference from D2D networks to the cellular network. Unlike existing interference mitigation schemes based on the interference alignment technique, the proposed scheme operates properly regardless of the number of data streams of a cellular network and moreover it does not require changing the precoding and decoding matrices of a cellular network. The simulation results demonstrate that the proposed scheme significantly increases the system capacity by mitigating the intra- and inter-system interference.

Effects on PCB Transmission Characteristics by SMD Pad Alignment (SMD의 패드 정렬이 PCB 전송 특성에 미치는 영향)

  • Kim, Chang-Gyun;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.874-877
    • /
    • 2018
  • Many SMDs (surface mount device) are mounted and mutually connected on a PCB (printed circuit board). System performance degrades when their transmission characteristics are bad. Pads connecting a PCB and SMDs affects PCB transmission characteristics significantly, so pad should be properly aligned to optimize impedance matching. In this paper, effects on PCB transmission characteristics are simulated by pad alignment. When frequency is relatively low, pad alignment seldom affect PCB transmission characteristics, but it affects more and more when frequency or pad size becomes larger. Therefore, pad alignment should be carefully chosen based on target frequency and pad size. Especially, the proposed edge-aligned pad is generally more advantageous over the conventional centered-aligned pad in 12~16 GHz Ku-band frequency.

Realization of Alignment-Free WPT System

  • Park, Byung-Chul;Son, Yong-Ho;Jang, Byung-Jun;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.329-331
    • /
    • 2014
  • A simple realization of an alignment-free wireless power transmission (WPT) system is presented in this letter. The WPT system consists of a transmitter with three reconfigurable modes corresponding to various controllable magnetic field directions in the azimuthal plane and an algorithm for the optimum mode selection carried by sensing the reflected voltage of the system. Twelve light emitting diodes (LEDs) are used to confirm the on- and off-state of LEDs powered wirelessly by the transmitter at every $15^{\circ}$ of the azimuthal plane. A criterion voltage from the reflected power of the system is found by using the correlation between the reflected voltage and the on- and off-state of the LEDs. Simply by continuous; monitoring of the voltage from the system, the system maintains power to the LEDs. The system is realized by MATLAB/Simulink and a National Instrument data acquisition device (DAQ) board. Measurements using the system show on-state LEDs in the azimuthal plane except at the angles of $60^{\circ}$, $75^{\circ}$, $180^{\circ}$, and $300^{\circ}$.

Heat Dissipation of Sealed LED Light Fixtures Using Pulsating Heat Pipe Technology

  • Kim, Hyung-Tak;Park, Hae-Kyun;Bang, Kwang-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • An efficient cooling system is an essential part of the electronic packaging such as a high-luminance LED lighting. A special technology, Pulsating Heat Pipe (PHP), can be applied to improve cooling of a sealed, explosion-proof LED light fixture. In this paper, the characteristics of the pulsating heat pipes in the imposed thermal boundary conditions of LED lightings were experimentally investigated and a PHP device that works free of alignment angle was investigated for cooling of explosion-proof LED lights. Five working fluids of ethanol, FC-72, R-123, water, and acetone were chosen for comparison. The experimental pulsating heat pipe was made of copper tubes of internal diameter of 2.1 mm, 26 turns. A variable heat source of electric heater and an array of cooling fins were attached to the pulsating heat pipe. For the alignment of the heating part at bottom, an optimum charging ratio (liquid fluid volume to total volume) was about 50% for most of the fluids and water showed the highest heat transfer performance. For the alignment of the heating part on top, however, only R-123 worked in an un-looped construction. This unique advantage of R-123 is attributed to its high vapor pressure gradient. Applying these findings, a cooling device for an explosion-proof type of LED light rated 30 W was constructed and tested successfully.

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • Baek, Chung-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF

Titanium oxide nanoparticle hybridized liquid crystal display in vertical alignment

  • Lee, Won-Gyu;O, Byeong-Yun;Im, Ji-Hun;Park, Hong-Gyu;Kim, Byeong-Yong;Na, Hyeon-Jae;Seo, Dae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.160-160
    • /
    • 2009
  • In recent years, the merging of nanomaterials and nano-technology into electro-optic (EO) device technology such as liquid crystal displays (LCDs) has attracted much attention because of their unique electro- and magneto-optic properties and novel display applications. One example of hybrid LC-inorganic systems is semiconductor nanorods added to LC for their strong reorientation effect and tunable refractive index. Doping of nanoparticles in LC or polymers can lead to changes in performance characteristics such as electro-optical, dielectric, memory effect, phase behavior, etc. Due to the tunability of LCDs with mixed inorganic materials, low voltage operation of a LC system can also be achieved using the significant electro-optical effect achieved through suspension of ferroelectric nanoparticles in NLC.

  • PDF

Implementation of Beamforming-based RF Wireless Power Transmission System using PLUTO SDR Platform (PLUTO SDR 플랫폼을 활용한 빔포밍 기반 RF 무선전력전송 테스트베드 구현)

  • Yoo Jung Moon;Changseok Yoon;Sung Sik Nam;Jae-Pil Chung
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.221-227
    • /
    • 2023
  • In this paper, by using a multi-PLUTO SDR platform, we implement a beamforming wireless power transmission test bed capable of beam alignment for the receiving end by calculating the location information of the target device (power receiving platform) in a situation where power transmitting and receiving platforms do not know each other's location information. Experiments were conducted in a laboratory environment based on the built test bed, and the experimental results were compared with the simulation results to confirm both whether the testbed was effectively configured and the performance effectiveness of the test bed.

Vertical Growth of Amorphous SiOx Nano-Pillars by Pt Catalyst Films (Pt 촉매 박막을 이용한 비정질 SiOx 나노기둥의 수직성장)

  • Lee, Jee-Eon;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.699-704
    • /
    • 2018
  • One-dimensional nanostructures have attracted increasing attention because of their unique electronic, optical, optoelectrical, and electrochemical properties on account of their large surface-to-volume ratio and quantum confinement effect. Vertically grown nanowires have a large surface-to-volume ratio. The vapor-liquid-solid (VLS) process has attracted considerable attention for its self-alignment capability during the growth of nanostructures. In this study, vertically aligned silicon oxide nano-pillars were grown on Si\$SiO_2$(300 nm)\Pt substrates using two-zone thermal chemical vapor deposition system via the VLS process. The morphology and crystallographic properties of the grown silicon oxide nano-pillars were investigated by field emission scanning electron microscopy and transmission electron microscopy. The diameter and length of the grown silicon oxide nano-pillars were found to be dependent on the catalyst films. The body of the silicon oxide nano-pillars exhibited an amorphous phase, which is consisted with Si and O. The head of the silicon oxide nano-pillars was a crystalline phase, which is consisted with Si, O, Pt, and Ti. The vertical alignment of the silicon oxide nano-pillars was attributed to the preferred crystalline orientation of the catalyst Pt/Ti alloy. The vertically aligned silicon oxide nano-pillars are expected to be applied as a functional nano-material.