• Title/Summary/Keyword: Electron-hole recombination

Search Result 105, Processing Time 0.03 seconds

Effects of Energetic Disorder and Mobility Anisotropy on Geminate Electron-hole Recombination in the Presence of a Donor-Acceptor Heterojunction

  • Wojcik, Mariusz;Michalak, Przemyslaw;Tachiya, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.795-802
    • /
    • 2012
  • Geminate electron-hole recombination in organic solids in the presence of a donor-acceptor heterojunction is studied by computer simulations. We analyze how the charge-pair separation probability in such systems is affected by energetic disorder of the media, anisotropy of charge-carrier mobilities, and other factors. We show that in energetically disordered systems the effect of heterojunction on the charge-pair separation probability is stronger than that in idealized systems without disorder. We also show that a mismatch between electron and hole mobilities reduces the separation probability, although in energetically disordered systems this effect is weaker compared to the case of no energetic disorder. We demonstrate that the most important factor that determines the charge-pair separation probability is the ratio of the sum of electron and hole mobilities to the rate constant of recombination reaction. We also consider systems with mobility anisotropy and calculate the electric field dependence of the charge-pair separation probability for all possible orientations of high-mobility axes in the donor and acceptor phases. We theoretically show that it is possible to increase the charge-pair separation probability by controlling the mobility anisotropy in heterojunction systems and in consequence to achieve higher efficiencies of organic photovoltaic devices.

The Moving Photocarrier Grating (MPG) Technique for the Transport Properties of α-Se:As Films

  • Park, Chang-Hee;Lee, Kwang-Sei;Kim, Jeong-Bae;Kim, Jae-Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.280-283
    • /
    • 2005
  • The moving photocarrier grating (MPG) technique for the determination of the carrier mobilities and the recombination lifetime of $\alpha$-Se:As films has been studied. The electron and hole drift mobility and the recombination lifetime of $\alpha$-Se films with arsenic (As) additions have been obtained from measurement of the short circuit current density $j_{sc}$ as a function of grating velocity and spatial period. The hole mobility decreases due to defect density of hole traps when x exceeds 0.003, whereas the hole mobility increases for the case of low As addition (x$\le$0.003). We have found an increase in hole drift mobility and recombination lifetime, especially when As with (x = 0.003) is added into the $\alpha$-Se film.

Dynamics and Bleaching of Ground State in CdSe/ZnS Quantum Dots

  • Kim, J.H.;Kyhm, K.
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.184-187
    • /
    • 2006
  • For resonant excitation of the ground state $1s^e-1S^h_{3/2}$, dynamics of 'the electron-hole pair in a CdSe quantum dot was investigated by degenerate pump-probe measurement. At low e-h pair densities, the decay of $1s^e-1S^h_{3/2}$ state is dominated by radiative recombination. As the number of the electron-hole pairs increases, new decay features become significant. Theoretical comparison suggests this is attributed to the bi-molecular and Auger-type scattering.

Study on recombination zone of blue phosphorescent OLED (청색인광 OLED의 재결합 영역에 관한 연구)

  • Kim, Tae-Yong;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.305-306
    • /
    • 2009
  • In this study, we have invastigated the recombination zone in the blue phosphorescent organic light-emitting devices with various partially doped structures. The basic device structure of the blue PHOLED was anode / hole injection layer (HIL) / hole transport layer (HTL) / emittingvastigated the recombination zone in the blue layer (EML) / hole blocking layer (HBL) / electron transport layer (ETL) / electron injection layer (EIL) / cathode. After the preparation of the blue PHOLED, the current density (J) - voltage (V) - luminance (L) and current efficiency characteristics were measured.

  • PDF

The moving photocarrier grating technique for the determination of transport parameters in a-Se:As films

  • Park, Chang-Hee;Lee, Kwang-Sei;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.47-48
    • /
    • 2005
  • The moving photocarrier grating(MPG) technique for the determination of the carrier mobilities and the recombination lifetime in a-Se:As films have been studied. The electron and hole drift mobility and the recombination lifetime of a-Se films with arsenic (As) additions have been obtained. We have found an increase in hole drift mobility and recombination lifetime, especially when 0.3% As is added into a-Se film. However, the electron mobility exhibits no observable change up to 0.5% As addition in a-Se films.0.3% As added a-Se film also exhibits the maximum short circuit current densities per laser intensity of $5.29\times10^{-7}$ A/W.

  • PDF

Studies on single electron-hole recombination in InAs/GaAs Quantum dots (InAs/GaAs 양자점의 단전자-정공 재결합 연구)

  • 이주인;임재영;서정철
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.257-261
    • /
    • 2001
  • InAs/GaAs quantum dots between InGaAs/GaAs superlattices were grown by MBE. The quantum dots size is shown to be very uniform by measuring photoluminescence spectra of quantum dots. Single photon structures based on self-consistent calculation were grown and single photon devices were fabricated by e-beam lithography. The electrical hystereses of I-V curves for single Photon devices would result from single electron-hole recombination, where the resonant-tunneling voltages of electron and hole are different.

  • PDF

Transport Properties of Conversion Materials for Digital Radiography

  • Kim, Jae-Hyung;Park, Chang-Hee;Nam, Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.250-254
    • /
    • 2007
  • Applying the moving photo-carrier grating(MPG) technique and time-of-flight(TOF) measurements, we studied the transport properties of stabilized amorphous selenium typical of the material used in direct conversion X-ray imaging devices. For MPG measurement, we obtained electron and hole mobility and the recombination lifetime of $\alpha-Se$ films with arsenic(As) additions. We found an apparent increase in hole drift mobility and recombination lifetime, especially when 0.3 % As was added into $\alpha-Se$ film, whereas electron mobility decreased with the addition of As due to the defect density. For TOF measurement, a laser beam with pulse duration of 5 ns and wavelength of 350 nm was illuminated on the surface of $\alpha-Se$ with a thickness of 400 ${\mu}m$. The measured hole and electron transit times were about 8.73 ${\mu}s$ and 229.17 ${\mu}s$, respectively.

The effects of As addition on the transport property of a-Se:As films using the moving photo-carrier grating technique

  • Park, Chang-Hee;Lee, Kwang-Sei;Kim, Jeong-Bae;Kim, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.252-253
    • /
    • 2005
  • The effects of As addition in amorphous selenium (a-Se) films on the carrier mobilities and the recombination lifetime have been studied using the moving photo-carrier grating (MPG) measurements. The electron and hole mobility, and recombination lifetime of a-Se films with arsenic (As) additions up to 1% have been obtained. We have found an increase in hole drift mobility and recombination lifetime, especially when 0.3% As is added into a-Se film, whereas electron mobility decreases with As addition due to the defect density from shallow traps.

  • PDF

Improved Performance of All-Solution-Processed Inverted InP Quantum Dot Light-Emitting Diodes Using Electron Blocking Layer (전자차단층 도입을 통한 전체 용액공정 기반의 역구조 InP 양자점 발광다이오드의 성능 향상)

  • Heejae Roh;Kyoungeun Lee;Yeyun Bae;Jaeyeop Lee;Jeongkyun Roh
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.224-229
    • /
    • 2024
  • Quantum dot light-emitting diodes (QD-LEDs) are emerging as next-generation displays owing to their high color purity, wide color gamut, and solution processability. Enhancing the efficiency of QD-LEDs involves preventing non-radiative recombination mechanisms, such as Auger and interfacial recombination. Generally, ZnO serves as the electron transport layer, which is known for its higher mobility compared to that of organic semiconductors and can lead to excessive electron injection. Some of the injected electrons pass through the quantum dot emissive layer and undergo non-radiative recombination near or within the organic hole transport layer (HTL), resulting in HTL degradation. Therefore, the implementation of electron blocking layers (EBLs) is essential; however, studies on all-solution-processed inverted InP QD-LEDs are limited. In this study, poly(9-vinylcarbazole) (PVK) is introduced as an EBL to mitigate HTL degradation and enhance the emission efficiency of inverted InP QD-LEDs. Using a single-carrier device, PVK was confirmed to effectively inhibit electron overflow into the HTL, even at extremely low thicknesses. The optimization of the PVK thickness also ensured minimal disruption of the hole-injection properties. Consequently, a 1.5-fold increase in the maximum luminance was achieved in the all-solution-processed inverted InP QD-LEDs with the EBL.

Influence of the Recombination Parameters at the Si/SiO2 Interface on the Ideality of the Dark Current of High Efficiency Silicon Solar Cells

  • Kamal, Husain;Ghannam, Moustafa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.232-242
    • /
    • 2015
  • Analytical study of surface recombination at the $Si/SiO_2$ interface is carried out in order to set the optimum surface conditions that result in minimum dark base current and maximum open circuit voltage in silicon solar cells. Recombination centers are assumed to form a continuum rather than to be at a single energy level in the energy gap. It is shown that the presence of a hump in the dark I-V characteristics of high efficiency PERL cells is due to the dark current transition from a high surface recombination regime at low voltage to a low surface recombination regime at high voltage. Successful fitting of reported dark I-V characteristics of a typical PERL cell is obtained with several possible combinations of surface parameters including equal electron and hole capture cross sections.