• Title/Summary/Keyword: Electron recombination

Search Result 248, Processing Time 0.025 seconds

Seasonal Variation of Meteor Decay Times Observed at King Sejong Station ($62.22^{\circ}S$, $58.78^{\circ}W$), Antarctica

  • Kim, Jeong-Han;Kim, Yong-Ha;Lee, Chang-Sup;Jee, Geon-Hwa
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.29.4-30
    • /
    • 2010
  • A VHF meteor radar at King Sejong Station ($162.22^{\circ}S$, $58.78^{\circ}W$), Antarctica has been observing meteors during a period of March 2007-July 2009. We analyzed the height profiles of the observed meteor decay times between 70 and 95 km by classifying strong and weak meteors according to their estimated electron line densities. The height profiles of monthly averaged decay times show a peak whose altitude varies with season in the range of 80~85 km: higher peak in southern spring and summer than in fall and winter. The higher peak during summer is consistent with colder temperatures that cause faster chemical reactions of electron removal, as effective recombination rates measured by rocket experiments. The height profiles of 15-min averaged decay times show a clear increasing trend with decreasing altitude from 95 km to the peak altitude, especially for weak meteors. This feature for weak meteors is well explained by ambipolar diffusion of meteor trails, allowing one to estimate atmospheric temperatures and pressures, as in previous studies. However, the strong meteors show not only significant scatters but also different slope of the increasing trend from 95 km to the peak altitude. Therefore, atmospheric temperature estimation from meteor decay times should be applied for weak meteors only. In this study, we present the simple model decay times to explain the height profiles of the observed decay times and discuss the additional removal processes of meteor trail electrons through the empirical recombination and by icy particles.

  • PDF

Thermodynamic Control in Competitive Anchoring of N719 Sensitizer on Nanocrystalline $TiO_2$ for Improving Photoinduced Electrons

  • Lim, Jong-Chul;Kwon, Young-Soo;Song, In-Young;Park, Sung-Hae;Park, Tai-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.68-69
    • /
    • 2011
  • The process of charge transfer at the interface between two semiconductors or between a metal and a semiconductor plays an important role in many areas of technology. The optimization of such devices requires a good theoretical description of the interfaces involved. This, in turn, has motivated detailed mechanistic studies of interfacial charge-transfer reactions at metal/organic, organic/organic, and organic/inorganic semiconductor heterojunctions. Charge recombination of photo-induced electron with redox species such as oxidized dyes or triiodide or cationic HTM (hole transporting materials) at the heterogeneous interface of $TiO_2$ is one of main loss factors in liquid junction DSSCs or solid-state DSSCs, respectively. Among the attempts to prevent recombination reactions such as insulating thin layer and lithium ions-doped hole transport materials and introduction of co-adsorbents, although co-adsorbents retard the recombination reactions as hydrophobic energy barriers, little attention has been focused on the anchoring processes. Molecular engineering of heterogeneous interfaces by employing several co-adsorbents with different properties altered the surface properties of $TiO_2$ electrodes, resulting to the improved power conversion efficiency and long-term stability of the DSSCs. In this talk, advantages of the coadsorbent-assisted sensitization of N719 in preparation of DSSCs will be discussed.

  • PDF

Analysis of the Formation of Rear Contact for Monocrystalline Silicon Solar Cells (단결정 실리콘 태양전지의 후면 전극형성에 관한 비교분석)

  • Kwon, Hyuk-Yong;Lee, Jae-Doo;Kim, Min-Jeong;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.571-574
    • /
    • 2010
  • Surface recombination loss should be reduced for high efficiency of solar cells. To reduce this loss, the BSF (back surface field) is used. The BSF on the back of the p-type wafer forms a p+layer, which prevents the activity of electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. Therefore, the open-circuit-voltage (Voc) and fill factor (FF) of solar cells are increased. This paper investigates the formation of the rear contact process by comparing aluminum-paste (Al-paste) with pure aluminum-metal(99.9%). Under the vacuum evaporation process, pure aluminum-metal(99.9%) provides high conductivity and low contact resistance of $4.2\;m{\Omega}cm$, but It is difficult to apply the standard industrial process to it because high vacuum is needed, and it's more expensive than the commercial equipment. On the other hand, using the Al-paste process by screen printing is simple for the formation of metal contact, and it is possible to produce the standard industrial process. However, Al-paste used in screen printing is lower than the conductivity of pure aluminum-metal(99.9) because of its mass glass frit. In this study, contact resistances were measured by a 4-point probe. The contact resistance of pure aluminum-metal was $4.2\;m{\Omega}cm$ and that of Al-paste was $35.69\;m{\Omega}cm$. Then the rear contact was analyzed by scanning electron microscope (SEM).

A study on the removing of contaminants by TiO2 coating and CaO additive (TiO2 코팅과 CaO 첨가에 따른 독성물질 제거에 관한 연구)

  • Woo, Insung;Lee, Geonduk;Hwang, Myungwhan;Lee, Hongju
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.127-132
    • /
    • 2013
  • This study shows an air-purification test by the UV lamp on which TiO2 catalyst is deposited with glass fiber in the reactor chamber. This test was based on the fundamental data of air-purifier as assessing a removing ability on various contaminants such as CH3COOH, NH3, NO and SO2 as variation of the TiO2 coating, the wave of UV lamp, and the additive CaO. As a result, the highest decomposing removal ratio was shown when 5-times coated glass fiber was used. It can be due to the recombination reaction of electrons and electron-hole in the loaded CaO. Thus, the decomposing removal ratio increased as the recombination ratio decreased. In addition, it was confirmed that the decomposing removal ratio lowered when CaO was considerably deposited because it hided the lamp of OH-1 radical.

Effect of Titanium Nanorods in the Photoelectrode on the Efficiency of Dye Sensitized Solar Cells

  • Rahman, Md. Mahbubur;Kim, Hyun-Yong;Jeon, Young-Deok;Jung, In-Soo;Noh, Kwang-Mo;Lee, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2765-2768
    • /
    • 2013
  • The effect of $TiO_2$ nanorods (TNR) and nanoparticles (TNP) composite photoelectrodes and the role of TNR to enhance the energy conversion efficiency in dye-sensitized solar cells (DSSCs) was investigated. The 5% TNR content into the TNP photoelectrode significantly increased the short-circuit current density ($J_{sc}$) and the open-circuit potential ($V_{oc}$) with the overall energy conversion efficiency enhancement of 13.6% compared to the pure TNP photoelectrode. From the photochemical and impedemetric analysis, the increased $J_{sc}$ and $V_{oc}$ for the 5% TNR/TNP composite photoelectrode was attributed to the scattering effect of TNR, reduced electron diffusion path and the suppression of charge recombination between the composite photoelectrode and electrolyte or dye.

Molecular Beam Epitaxial Growth of GaAs on Silicon Substrate (실리콘 기판위에 분자선속법으로 생장한 GaAs 에피층)

  • 이동선;우덕하;김대욱;우종천
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.1
    • /
    • pp.82-91
    • /
    • 1991
  • Molecular beam epitaxial growth of GaAs on Si substrate and the results on its analysis are reported. Epitaxy was performed on two different types of the substrate under various grwth conditions, and was analyzed by scanning and transmission electron microscopes, X-ray diffractometer, photoluminescence and Hall measurements. GaAs epitaxial layer has better crystalline quality when it was grown on a tilt-cut substrate. The stress seems to be releaxed more easily when multi-quantum well was introduced in the buffer layer. The epilayer was doped unintentionally with Si during growth due to the diffusion of the substrate. Also observed is that the quantum efficiency of excitonic radiative recombination of the heteroepitaxy is not as good as that of the homoepitaxy in the same doping level.

  • PDF

Efficient Organic Light-emitting Diodes by Insertion a Thin Lithium Fluoride Layer with Conventional Structure

  • Kim, Young-Min;Park, Young-Wook;Choi, Jin-Hwan;Kim, Jai-Kyeong;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.26-30
    • /
    • 2006
  • Insertion of a thin lithium fluoride (TLF) layer between an emitting layer (EML) and an electron transporting layer has resumed in the developement of a highly efficient and bright organic light-emitting diode (OLED). Comparing with the performance of the device as a function of position with the TLF layer in tris-(8-hydroxyquinoline) aluminum $(Alq_{3})$, we propose the optimal position for the TLF layer in the stacked structure. The fabricated OLED shows a luminance efficiency of more than 20 cd/A, a power efficiency of 12 Im/W (at 20 mA/$cm^{2}$), and a luminance of more than 22 000 cd/$m^{2}$ (at 100 mA/$cm^{2}$), respectively. We suggest that the enhanced performance of the OLED is probably attributed to the improvement of carrier balance to achieve a high level of recombination efficiency in an EML.

Characterization of Morphology Controlled Fluorine-doped SnO2 Thin Films

  • An, Ha-Rim;An, Hye-Lan;Ahn, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.453.1-453.1
    • /
    • 2014
  • Fluorine-doped tin oxide (FTO), which is commonly used in dye-sensitized solar cells (DSSCs), is a promising material of transparent conducting oxides (TCOs) because of advantages such as high chemical stability, high resistance, high optical transparency (>80% at 550nm), and low electrical resistivity (${\sim}10-4{\Omega}{\cdot}cm$). Especially, dye-sensitized solar cells (DSSCs) have been actively studied since Gratzel's research group required FTO substrate as a charge collector. When FTO substrates are used in DSSCs, photo-injected electrons may experience recombination at interface between dye-bonded semiconductor oxides ($TiO_2$) on FTO substrate and the electrolyte. To solve these problems, one is that because recombination at FTO substrate cannot be neglected, thin $TiO_2$ layer on FTO substrate as a blocking layer was introduced. The other is to control the morphology of surface on FTO substrate to reduce a loss of electrons. The structural, electrical, and optical characteristics of morphology controlled-FTO thin films as TCO materials were analyzed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Hall Effect Measurement, and UV spectrophotometer. The performance of DSSCs fabricated with morphology controlled FTO substrates was performed using Power Conversion Efficiency (PCE). We will discuss these results in detail in Conference.

  • PDF

Influence of Metallic Contamination on Photovoltaic Characteristics of n-type Silicon Solar-cells (중금속 오염이 n형 실리콘 태양전지의 전기적 특성에 미치는 영향에 대한 연구)

  • Kim, Il-Hwan;Park, Jun-Seong;Park, Jea-Gun
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.17-20
    • /
    • 2018
  • The dependency of the photovoltaic performance of p-/n-type silicon solar-cells on the metallic contaminant type (Fe, Cu, and Ni) and concentration was investigated. The minority-carrier recombination lifetime was degraded with increasing metallic contaminant concentration, however, the degradation sensitivity of recombination lifetime was lower at n-type than p-type silicon wafer, which means n-type silicon wafer have an immunity to the effect of metallic contamination. This is because heavy metal ions with positive charge have a much larger capture cross section of electron than hole, so that reaction with electrons occurs much more easily. The power conversion efficiency of n-type solar-cells was degraded by 9.73% when metallic impurities were introduced in the silicon bulk, which is lower degradation compared to p-type solar-cells (15.61% of efficiency degradation). Therefore, n-type silicon solar-cells have a potential to achieve high efficiency of the solar-cell in the future with a merit of immunity against metal contamination.

Genomic Recombination of Bombyx mori and Autographa californica Nuclear Polyhedrosis Viruses (누에 및 Autographa californica 핵다각체병 바이러스에 대한 유전자 재조명)

  • 우수동;박범석;박지현;정인식;양재명;강석권
    • Korean journal of applied entomology
    • /
    • v.32 no.4
    • /
    • pp.407-413
    • /
    • 1993
  • Twelve recombinant viruses with wider host range were plaque purified after coinfectian of Autographa cahjornica and Bombyx mOT! NPVs into Sf9 ar BmN-4 cells. Restriction endonucleases analysis of the recombinant's DNAs showed that the recombinatIOn between AcNPV and BmNPV genomes had occurred more than once. When the recombinam RecB-8, derived from BrnN-4 cells, was observed by electron rntcroscopy, the shape of the polyhedron was a regular tetrahedron, and few virions were occluded into a polyhedron.

  • PDF