• Title/Summary/Keyword: Electron optics

Search Result 189, Processing Time 0.033 seconds

Comparative Ultrastructures of the Fertilized Egg Envelopes in Nothobranchius foerschi and Nothobranchius rachovii, Nothobranchiidae, Teleostei

  • Kwon, Ohyun;Sohn, Joon Hyung;Chung, Dong Yong;Kim, Eun Jin;Kim, Dong Heui
    • Applied Microscopy
    • /
    • v.47 no.2
    • /
    • pp.70-74
    • /
    • 2017
  • In the case of genus Nothobranchius, Nothobranchiidae, the morphology of fertilized eggs and ultrastructures of fertilized egg envelopes have been reported in only two fishes. Therefore it is hard for sure to these morphological characteristics show genus specificity because of lower research samples. So, we studied the morphology of fertilized egg, and compared the ultrastructures of outer surface, micropyle, and section of fertilized egg envelopes under the light and electron microscopes from the other two species, Nothobranchius foerschi and Nothobranchius rachovii, Nothobranchiidae to find out whether these structures have the species specificity or not. Both fertilized eggs were spherical, demersal and adhesive, and have a large oil droplet. The adhesive whip-like structures were distributed on the outer surface of egg envelope, and a micropyle located on the animal pole. The fertilized egg envelope consisted of two distinct layers: an outer electron-dense layer with adhesive structures and an inner lamellae layer in both species. The external shapes of fertilized egg and ultrastuctures of outer surface, micropyle, and section of fertilized egg envelope have same structure including results before. Our data indicate that these morphological characteristics of fertilized egg and fertilized egg envelope show genus Nothobranchius specificity.

Influence of high energy electron beam treatment on the photocatalytic activity of $TiO_2$ nanoaparticles on carbon fiber

  • Sim, Chae-Won;Kim, Myeong-Ju;Seo, Hyeon-Uk;Kim, Gwang-Dae;;Kim, Dong-Un;Nam, Jong-Won;Jeong, Myeong-Geun;Lee, Byeong-Cheol;Park, Ji-Hyeon;Kim, Yeong-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.441-441
    • /
    • 2011
  • $TiO_2$ nanoparticles were grown on carbon fiber by atomic later deposition (ALD) with TTIP $(Ti(OCH(CH_3)_2)_4$ and $H_2O$ precusors. After sampe surfaces were treated by electron beam (1 MeV, 5 KGy), an improvement in the photocatalytic reacitivity of $TiO_2$ nanoparticles on carbon fiber was observed. An increase in the population of hydroxyl group on $TiO_2$ particles and the oxidation of carbon fiber were found upon e-beam exposure, whereas there was no noticeable changes of their morphology. It implies that those changes in O and C 1s state of $TiO_2$ particles/carbon fiber induced by e-beam treatment could be related to the enhancement of the photocatalytic activity. In contrast, when carbon fiber fully covered with $TiO_2$ thick films was treated with high-energy electron beam under same conditions, the improvement of photocatalytic activity as well as any changes in XPS spectra (Ti 2p, O 1s and C 1s) could not be found.

  • PDF

Fabrication of PPLN by Real-Time Control of a Transferred Charge and Analysis of Domain Inversion Process (주입 전하량의 실시간 제어에 의한 PPLN 제작 및 분극반전 과정 분석)

  • Kwon, Jai-Young;Kim, Hyun-Deok;Song, Jae-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.262-267
    • /
    • 2006
  • We proposed a PPLN fabrication setup that measures the voltage and current applied to $LiNbO_3$ in real time during application of a DC electric field. Because the duration for transferring a sufficient electron charge to $LiNbO_3$ increases, we are able to control the electron charge flow transferred to $LiNbO_3$ efficiently. We divided the domain inversion process of PPLN into 5 states: Nucleation (state 1), Spread of the domain inversion region under the electrode(state 2), Accumulation of the electron charge at the insulator/$LiNbO_3$ interface(state 3), Domain inversion under the insulator layer after breakdown(state 4), and Lowering the electric field applied to $LiNbO_3$ (state 5). We have found that the Threshold Point is essential for the domain inversion and that the domain inversion process must be stopped within state 3 for the optimum PPLN. Using these results, we could fabricate a stable and reproducible PPLN efficiently.

Optical and Structural Properties of TiO2 Thin Films Prepared at Various Oxygen Pressure by Electron-Beam Evaporation (산소 분압에 따라 전자빔 증착법으로 제작된 TiO2 박막의 구조적.광학적 특성)

  • Choi, Won-Seok;Kim, Jang-Seob;Jung, Jong-Min;Hahn, Sung-Hong;Kim, Eui-Jung;Lee, Chung-Woo;Joo, Jong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.171-177
    • /
    • 2007
  • We prepared $TiO_2$ thin films by electron-beam evaporation at various oxygen pressures, and investigated their optical and structural properties as a function of the annealing temperature. The physical properties of the $TiO_2$ thin films depend upon the injection oxygen content. With the increased injection of oxygen, the phase transformation temperature and the transmittance of $TiO_2$ thin films in the range of visible wavelength were increased. For low injection of oxygen, the absorption edges of $TiO_2$ thin films were more red-shifted when annealed at temperatures from $700^{\circ}C$ to $1100^{\circ}C$.

Simulation Anaysis on the Output Characteristics of XeF$(C\rightarrowA$ Excimer Laser Pumped by Electron-Beam (전자빔여기 XeF$(C\rightarrowA$ 엑시머 레이저의 출력특성에 대한 시뮬레이션 해석)

  • 류한용;이주희
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.201-213
    • /
    • 1995
  • By the use of computer simulation including collisional mixing kinetic processes of the B- and C-state in the upper laser level the output characteristics of electron-beam pumped XeF$(C\rightarrowA$ excimer laser are analyzed. We compared the results between experiments and simulations for the $XeF^*(C)$ formation that correlated the number of densities of the $XeF^*(B)$. We obtained good agreement$(28.5 mJ\pm5%)$ with comparisons between experiment and simulation and confirmed the optimal gas mixing ratio of $Xe/F_2/Ar=5.26/0.49/94.28%$ at atmospheric pressure laser medium under the condition of 70 ns [FWHM] electron-beam (800 kV, 21 kA). Also through the simulation we have investigated that the $XeF^*(C)$ formation channel, the $XeF^*(C)$ relaxation channel, and the absorption channel of bluegreen wavelength region as a function of F2 halogen donor and Xe partial pressure. ssure.

  • PDF

Effect of Electron-beam Irradiaton on the Artificial Bone Substitutes Composed of Hydroxyapatite and Tricalcium Phosphate Mixtures with Type I Collagen (수산화인회석과 인산삼칼슘 및 1형 콜라젠 혼합골의 전자빔 조사 효과)

  • Park, Jung Min;Kim, Soung Min;Kim, Min Keun;Park, Young Wook;Myoung, Hoon;Lee, Byung Cheol;Lee, Jong Ho;Lee, Suk Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.1
    • /
    • pp.38-50
    • /
    • 2013
  • Purpose: The aim of this study is to evaluate the effect and potential of electron beam (E-beam) irradiation treatment to the synthetic bony mixtures composed of hydroxyapatite (HA; Bongros$^{(R)}$, Bio@ Co., Korea) and tricalcium phosphate (${\beta}$-TCP, Sigma-Aldrich Co., USA), mixed at various ratios and of type I collagen (Rat tail, BD Biosciences Co., Sweden) as an organic matrix. Methods: We used 1.0~2.0 MeV linear accelerator and 2.0 MeV superconductive linear accelerator (power 100 KW, pressure 115 kPa, temperature $-30{\sim}120^{\circ}C$, sensor sensitivity 0.1~1.2 mV/kPa, generating power sensitivity 44.75 mV/kPa, supply voltage $5{\pm}0.25$ V) with different irradiation dose, such as 1, 30 and 60 kGy. Structural changes in this synthetic bone material were studied in vitro, by scanning electron microscopy (SEM), elementary analysis and field emission scanning electron microscope (FE-SEM), attenuated total reflection (ATR), and electron spectroscopy for chemical analysis (ESCA). Results: The large particular size of HA was changed after E-beam irradiation, to which small particle of TCP was engaged with organic collagen components in SEM findings. Conclusion: The important new in vitro data to be applicable as the substitutes of artificial bone materials in dental and medical fields will be able to be summarized.

Electrical Properties and Defect States in ZnO Substrates Irradiated by MeV Electron-beam (고 에너지 전자빔 조사에 따른 ZnO 기판의 결함생성 및 전기적 특성 변화)

  • Lee, Dong-Uk;Song, Hoo-Young;Han, Dong-Seok;Kim, Seon-Pil;Kim, Eun-Kyu;Lee, Byung-Cheol
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.199-205
    • /
    • 2010
  • The electrical properties and defect states in ZnO substrates were studied during high-energy electron beam irradiations. 1 MeV and 2 MeV electron-beam with dose of $1{\times}10^{16}$ electrons/$cm^2$ were irradiated on Zn-surface of the sample. In the sample irradiated by 1 MeV, the leakage current was increased by electron-beam induced surface defects, while the enhancement of on/off property and the decrease of leakage current appeared in the 2 MeV irradiated sample. From the deep level transient spectroscopy measurements for these samples, it showed that the defect states with the activation energies of $E_c$-0.33 eV and $E_v$+0.8 eV are generated during the high energy electron-beam irradiation. Especially, it considered that the $E_c$-0.33 eV state related with O-vacancy affects to their electrical properties.

Growth of ZnO nanorods by vapor-solid method (기상증착법을 이용한 산화아연 나노로드의 성장)

  • 김나리;김재수;변동진;노대호;진정근;양재웅
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.122-122
    • /
    • 2003
  • In recent years, there has been increasing interest in quasi one-dimensional nanostructural systems, because of their numerous potential applications in various areas, such as materials sciences, electronics, optics, magnetism and energy storage. Specifically, zinc oxide (ZnO) is recognized as one of the most promising oxide semiconductor materials, because of its good optical, electrical, and piezoelectrical properties. The ZnO nanorods were synthesized using vapor-solid (VS) mechanism on soda lime glass substrate without the presence of metal catalyst. ZnO nanorods were prepared thermal evaporation of a Zn powder at 500. As-fabricated ZnO nanorods had an average diameter and length of 40nm and 3$\mu\textrm{m}$. Transmission electron microscopy revealed that the ZnO nanorods were single crystalline with the growth direction perpendicular to the (101) lattice plane. The influences of reaction time on the formation of the ZnO nanorods were investigated. The Photoluminescence measurements showed that the ZnO nanorods had a strong ultraviolet emission at around 380nm and a green emission at around 500nm.

  • PDF

Electron Transport Mechanisms in Ag Schottky Contacts Fabricated on O-polar and Nonpolar m-plane Bulk ZnO

  • Kim, Hogyoung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.285-289
    • /
    • 2015
  • We prepared silver Schottky contacts to O-polar and nonpolar m-plane bulk ZnO wafers. Then, by considering various transport models, we performed a comparative analysis of the current transport properties of Ag/bulk ZnO Schottky diodes, which were measured at 300, 200, and 100 K. The fitting of the forward bias current-voltage (I-V) characteristics revealed that the tunneling current is dominant as the transport component in both the samples. Compared to thermionic emission (TE), a stronger contribution of tunneling current was observed at low temperature. The reverse bias I-V characteristics were well fitted with the thermionic field emission (TFE) in both the samples. The presence of acceptor-like adsorbates, such as O2 and H2O, modulated the surface conductive state of ZnO, thereby affecting the tunneling effect. The degree of activation/passivation of acceptor-like adsorbates might be different in both the samples owing to their different surface morphologies and surface defects (e.g., oxygen vacancies).

Multiple-Bit Encodings of Bragg Photonic-structures by Using Consecutive Etch with Various Square Wave Currents

  • Lee, Bo-Yeon;Hwang, Minwoo;Cho, Hyun;Kim, Hee-Chol;Cho, Sungdong
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.192-196
    • /
    • 2011
  • New method to encode multiple photonic features of Bragg type reflector on silicon wafer has been investigated. Multiple bit encodes of distributed Bragg reflector features have been prepared by electrochemical etching of crystalline silicon by using various square wave current densities. Optical characterization of multi-encoding of distributed Bragg reflectors on porous silicon was achieved by Ocean optics 2000 spectrometer for the search of possible applications of multiple bit encoding of distributed Bragg reflectors such as multiplexed assays and chemical sensors. The morphology and cross-sectional structure of multi-encoded distributed Bragg reflectors was investigated by field emission scanning electron micrograph.