Browse > Article
http://dx.doi.org/10.4313/TEEM.2015.16.5.285

Electron Transport Mechanisms in Ag Schottky Contacts Fabricated on O-polar and Nonpolar m-plane Bulk ZnO  

Kim, Hogyoung (Department of Visual Optics and Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology (Seoultech))
Publication Information
Transactions on Electrical and Electronic Materials / v.16, no.5, 2015 , pp. 285-289 More about this Journal
Abstract
We prepared silver Schottky contacts to O-polar and nonpolar m-plane bulk ZnO wafers. Then, by considering various transport models, we performed a comparative analysis of the current transport properties of Ag/bulk ZnO Schottky diodes, which were measured at 300, 200, and 100 K. The fitting of the forward bias current-voltage (I-V) characteristics revealed that the tunneling current is dominant as the transport component in both the samples. Compared to thermionic emission (TE), a stronger contribution of tunneling current was observed at low temperature. The reverse bias I-V characteristics were well fitted with the thermionic field emission (TFE) in both the samples. The presence of acceptor-like adsorbates, such as O2 and H2O, modulated the surface conductive state of ZnO, thereby affecting the tunneling effect. The degree of activation/passivation of acceptor-like adsorbates might be different in both the samples owing to their different surface morphologies and surface defects (e.g., oxygen vacancies).
Keywords
Bulk ZnO; Current transport; Tunneling current;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Schmitsdorf, T. Kampen, and W. Monch, J. Vac. Sci. Technol. B, 15, 1221 (1997). [DOI: http://dx.doi.org/10.1116/1.589442]   DOI
2 E. Rhoderick and R. Williams, Metal-Semiconductor Contacts (Oxford Science, Oxford, 1988)
3 S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, Prog. Mater. Sci., 50, 293 (2005). [DOI: http://dx.doi.org/10.1016/j.pmatsci.2004.04.001]   DOI
4 T. Deguchi, K. Sekiguchi, A. Nakamura, T. Sota, R. Matsuo, S. Chichibu, and S. Nakamura, Jpn. J. Appl. Phys., 38, L914 (1999). [DOI: http://dx.doi.org/10.1143/JJAP.38.L914]   DOI
5 F. Bernardini and V. Fiorentini, Phys. Rev. B, 56, 16 (1997. [DOI: http://dx.doi.org/10.1103/PhysRevB.56.R10024]   DOI
6 H. Huang, C. Kuo, C. Chang, Y. Lin, T. Lu, L. Tu, and W. Hsieh, J. Electrochem. Soc., 159, H290 (2012). [DOI: http://dx.doi.org/10.1149/2.080203jes]   DOI
7 W.Mtangi, F. Auret, C. Nyamhere, P. Rensburg, M. Diale, and A. Chawanda, Physica B, 404, 1092 (2009). [DOI: http://dx.doi.org/10.1016/j.physb.2008.11.022]   DOI
8 K. Sarpatwari, O. Awadelkarim, M. Allen, S. Durbin, and S. Mohney, Appl. Phys. Lett., 94, 242110 (2009). [DOI: http://dx.doi.org/10.1063/1.3156031]   DOI
9 A. Lajn, H. Wenckstern, Z. Zhang, C. Czekalla, G. Biehne, J. Lenzner, H. Hochmuth, M. Lorenz, M. Grundmann, S. Wickert, C. Vogt, and R. Denecke, J. Vac. Sci. Technol. B, 27, 1769 (2009). [DOI: http://dx.doi.org/10.1116/1.3086718]   DOI
10 H. Cao, J. Xu, D. Zhang, S. Chang, S. Ho, E. Seelig, X. Liu, and R. Chang, Phys. Rev. Lett., 84, 5584 (2000). [DOI: http://dx.doi.org/10.1103/PhysRevLett.84.5584]   DOI
11 A. Yu, Solid State Electron., 13, 239 (1970). [DOI: http://dx.doi. org/10.1016/0038-1101(70)90056-0]   DOI
12 S. Das, J. Choi, J. Kar, K. Moon, T. Lee, and J. Myoung, Appl. Phys. Lett., 96, 092111 (2010). [DOI: http://dx.doi.org/10.1063/1.3339883]   DOI
13 D. Somvanshi and S. Jit, IEEE Electron Dev. Lett., 34, 1238 (2013). [DOI: http://dx.doi.org/10.1109/LED.2013.2278738]   DOI
14 E. Gür, S. Tüzemen, B. Kiliç, and C. Coşkun, J. Phys.: Condens. Matter., 19, 196206 (2007). [DOI: http://dx.doi.org/10.1088/0953-8984/19/19/196206]   DOI
15 F. Padovani and R. Stratton, Solid State Electron., 9, 695 (1966). [DOI: http://dx.doi.org/10.1016/0038-1101(66)90097-9]   DOI
16 K. Çınar, N. Yıldırım, C. Coşkun, and A. Turut, J. Appl. Phys., 106, 073717 (2009). [DOI: http://dx.doi.org/10.1063/1.3236647]   DOI
17 K. Suzue, S. Mohammad, Z. Fan, W. Kim, O. Aktas, A. Botchkarev, and H. Morkoç, J. Appl. Phys., 80, 4467 (1996). [DOI: http://dx.doi.org/10.1063/1.363408]   DOI
18 D. Yan, J. Jiao, J. Ren, G. Yang, and. X. Gu, J. Appl. Phys., 114, 144511 (2013). [DOI: http://dx.doi.org/10.1063/1.4824296]   DOI
19 H. Benmaza, B. Akkal, M. Anani, H. Abid, Z. Bensaad, and J. Bluet, Mater. Chem. Phys., 112, 63 (2008). [DOI: http://dx.doi.org/10.1016/j.matchemphys.2008.05.037]   DOI
20 O. Schmidt, A. Geis, P. Kiesel, C. Walle, N. Johnson, A. Bakin, A. Wagg, and G. Dohler, Superlattices Microstrut., 39, 8 (2006). [DOI: http://dx.doi.org/10.1016/j.spmi.2005.08.056]   DOI
21 M. Allen, X. Weng, J. Redwing, K. Sarpatwari, S. Mohney, H. Wenckstern, M. Grundmann, and S. Durbin, IEEE Trans. Electron Devices, 56, 2160 (2009). [DOI: http://dx.doi.org/10.1109/TED.2009.2026393]   DOI
22 S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
23 R. Tung, Mater. Sci. Eng. R, 35, 1 (2001). [DOI: http://dx.doi.org/10.1016/S0927-796X(01)00037-7]   DOI
24 W. Mönch, J. Vac. Sci. Technol. B, 17, 1867 (1999). [DOI: http://dx.doi.org/10.1116/1.590839]   DOI