• 제목/요약/키워드: Electron micrograph

검색결과 154건 처리시간 0.022초

Convergent beam electron diffraction의 정량분석을 응용한 재료의 구조분석 (Applications of quantitative convergent beam electron diffraction measurement for structural characterization)

  • 김규현;이민희;정새은;고세현
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.176-177
    • /
    • 2014
  • The new algorithm was proposed to quantify symmetry recorded in convergent beam electron diffraction (CBED) patterns and symmetry mapping. The proposed algorithm is based on the normalized cross-correlation coefficient (${\gamma}$) for quantifying the amount of symmetry in a CBED pattern. The quantification and mapping procedures are automatically controlled by the script implemented in Gatan Digital Micrograph$^{(c)}$. We apply the quantitative CBED measurement to a strained Si sample to test the sensitivity to defects.

  • PDF

Sensitivity of quantitative symmetry measurement algorithms for convergent beam electron diffraction technique

  • Hyeongsub So;Ro Woon Lee;Sung Taek Hong;Kyou-Hyun Kim
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.10.1-10.9
    • /
    • 2021
  • We investigate the sensitivity of symmetry quantification algorithms based on the profile R-factor (Rp) and the normalized cross-correlation (NCC) coefficient (γ). A DM (Digital Micrograph©) script embedded in the Gatan digital microscopy software is used to develop the symmetry quantification program. Using the Bloch method, a variety of CBED patterns are simulated and used to investigate the sensitivity of symmetry quantification algorithms. The quantification results show that two symmetry quantification coefficients are significantly sensitive to structural changes even for small strain values of < 1%.

Replacing critical point drying with a low-cost chemical drying provides comparable surface image quality of glandular trichomes from leaves of Millingtonia hortensis L. f. in scanning electron micrograph

  • Raktim Bhattacharya;Sulagna Saha;Olga Kostina;Lyudmila Muravnik;Adinpunya Mitra
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.15.1-15.6
    • /
    • 2020
  • Sample preparation including dehydration and drying of samples is the most intricate part of scanning electron microscopy. Most current sample preparation protocols use critical-point drying with liquid carbon dioxide. Very few studies have reported samples that were dried using chemical reagents. In this study, we used hexamethyldisilazane, a chemical drying reagent, to prepare plant samples. As glandular trichomes are among the most fragile and sensitive surface structures found on plants, we used Millingtonia hortensis leaf samples as our study materials because they contain abundant glandular trichomes. The results obtained using this new method are identical to those produced via critical-point drying.

용융탄산염형 연료전지 전극의 미세구조와 특성 (Characteristics and microstructure of MCFC electrode)

  • 김귀열;엄승욱
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권5호
    • /
    • pp.544-550
    • /
    • 1995
  • In this paper, the anode for molten carbonate fuel cell have been prepared by doctor blade method and microstructure, pore distribution, sintering test of the electrode were investigated. Component analysis were done by Scanning Electron Micrograph, porosimeter and sintering test apparatus. As a result, median pore size was 11.mu.m order at the major specimen and porosity was about 70%. And thickness loss of the electrode was 1.5% at Ni-10Co anode after sintering test.

  • PDF

Nanophase Iron Clusters Produced by CO₂Laser Multiphoton-Decomposition of $Fe(CO)_5$ : Their Generation and Characterization

  • Lee, G. H.;Huh, S. H.;Jung, H. I.
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권8호
    • /
    • pp.686-688
    • /
    • 1996
  • We have produced nanophase iron clusters inside a gas cell by decomposing iron pentacarbonyls from the mixture of ~20 Torr Fe(CO)5/~3 Torr SF6 with a pulsed CO2 laser. The product displayed a black tint. Its composition was identified to be mostly iron from an inductively coupled plasma (ICP) atomic emission spectrum. The X-ray diffraction (XRD) pattern indicates a body-centered cubic structure for the cluster. A transmission electron micrograph proves that their diameter ranges between 50 and 70 Å and their average diameter is 60 Å.

DNA microarray analysis of gene expression of MC3T3-E1 osteoblast cell cultured on anodized- or machined titanium surface

  • Park, Ju-Mi;Jeon, Hye-Ran;Pang, Eun-Kyoung;Kim, Myung-Rae;Kang, Na-Ra
    • Journal of Periodontal and Implant Science
    • /
    • 제38권sup2호
    • /
    • pp.299-308
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate adhesion and gene expression of the MC3T3-E1 cells cultured on machined titanium surface (MS) and anodized titanium surface (AS) using MTT test, Scanning electron micrograph and cDNA microarray. Materials and Methods: The MTT test assay was used for examining the proliferation of MC3T3-E1 cells, osteoblast like cells from Rat calvaria, on MS and AS for 24 hours and 48 hours. Cell cultures were incubated for 24 hours to evaluate the influence of the substrate geometry on both surfaces using a Scanning Electron Micrograph (SEM). The cDNA microarray Agilent Rat 22K chip was used to monitor expressions of genes. Results: After 24 hours of adhesion, the cell density on AS was higher than MS (p < 0.05). After 48 hours the cell density on both titanium surfaces were similar (p > 0.05). AS had the irregular, rough and porous surface texture. After 48 hours incubation of the MC3T3-E1 cells, connective tissue growth factor (CTGF) was up-regulated on AS than MS (more than 2 fold) and the insulin-like growth factor 1 receptor was down-regulated (more than 2 fold) on AS than MS. Conclusion: Microarray assay at 48 hours after culturing the cells on both surfaces revealed that osteoinductive molecules appeared more prominent on AS, whereas the adhesion molecules on the biomaterial were higher on MS than AS, which will affect the phenotype of the plated cells depending on the surface morphology.

Ultrastructural Process of Protoplast Fusion Between Lentinula edodes and Coriolus versicolor

  • Kim, Chae-Kyun;Kim, Byong-Kak
    • Mycobiology
    • /
    • 제29권1호
    • /
    • pp.15-18
    • /
    • 2001
  • Protoplast fusion is a useful technique for establishing fungal hybrids to overcome the natural barriers. The ultrastructure of protoplast and its fusion process were observed using a scanning electron microscopy(SEM) and a transmission electron microscopy(TEM). The protoplasts were variable in size from $0.5{\sim}15{\mu}m$ in diameter, and the mean diameter was about $3{\sim}5{\mu}m$. It was impossible to discriminate protoplasts of Lentinula edodes from protoplasts of Coriolus versicolor by size and surface structure. Big aggregates of the dehydrated protoplasts were observed, after polyethylene glycol 4000 treatment. Nucleus, mitochondria, lipid granules and various vesicles having granules were scattered in the cytoplasm. The vesicles were heterogeneous in size and vary from one protoplast to another. The fused membrane layer of the two protoplasts was observed. Time protoplast membrane contact and reorganization of membrane components were essential condition for protoplast fusion. Transmission electron micrograph showed fused protoplasts and flattening of the cells in the area of the membrane contact. We hope that our electron microscopic observations provide some insights into the understanding of the fusion process of protoplast in fungi.

  • PDF

Energy Generation Coupled to Azoreduction by Membranous Vesicles from Shewanella decolorationis S12

  • Hong, Yi-Guo;Guo, Jun;Sun, Guo-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권1호
    • /
    • pp.37-41
    • /
    • 2009
  • Previous studies have demonstrated that Shewanella decolorationis S12 can grow on the azo compound amaranth as the sole electron acceptor. Thus, to explore the mechanism of energy generation in this metabolism, membranous vesicles (MVs) were prepared and the mechanism of energy generation was investigated. The membrane, which was fragmentized during preparation, automatically formed vesicles ranging from 37.5-112.5 nm in diameter under electron micrograph observation. Energy was conserved when coupling the azoreduction by the MVs of an azo compound or Fe(III) as the sole electron acceptor with $H_2$, formate, or lactate as the electron donor. The amaranth reduction by the vesicles was found to be inhibited by specific respiratory inhibitors, including $Cu^{2+}$ ions, dicumarol, stigmatellin, and metyrapone, indicating that the azoreduction was indeed a respiration reaction. This finding was further confirmed by the fact that the ATP synthesis was repressed by the ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD). Therefore, this study offers solid evidence of a mechanism of microbial dissimilatory azoreduction on a subcell level.

Tight epithelia의 세포특성과 수송체계에 관한 전자현미경적 연구 (Electron Microscopic Studies on Cellular Characteristics and Transport Systems in Tight Epithelia)

  • 전진석
    • Applied Microscopy
    • /
    • 제26권1호
    • /
    • pp.47-57
    • /
    • 1996
  • This study analysed the transport properties of bladder mucosa known as the typical system of 'tight epithelia' by using TEM observation with both rapid freeze-fracture electron microscopy and thin-section method and mainly analysed the cellular characteristics of turtle bladder epithelial cells. The bladder epithelium, like other tight epithelia, consists of a heterogenous population of cells. The majority of the mucosal cells are the granular cells and may function primarily in the process of active $Na^+$ reabsorption in turtle bladder. The remaining two types of cells are rich in mitochondria and is believed to be res-ponsible for a single major transport system, namely, $H^+$ transport by A-type of cell and urinary $HCO_{3}^-$ secretion by B-type of cell. As viewed in freeze-fracture electron micrograph, the tight junctions form a continuous tight seal around the epithelial cells, thus restricting diffusion in tight epithelia. In addition, the apical surface membranes have a population of rod-shaped intramembranous particles (IMPs). It is believed that these IMPs probably represent the components of the proton pump. However, it is likely that these characteristics of the apical transporter remain to be clarified in tight epithelial cells.

  • PDF

Synthesis of Cobalt-Iron Prussian Blue Analogues Nanotubes by CTAB Soft-Template Method

  • Liu, Peng;Liang, Chuanghui;Xu, Jianfeng;Fang, Jian;Zhao, Jihua;Shen, Weiguo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1336-1338
    • /
    • 2010
  • Three cobalt-iron Prussian Blue Analogues (PBAs) nanotubes contained with different alkali metal cations of K, Rb or Cs, respectively, were prepared by using cetyltrimethylammonium bromide (CTAB)/ethanol-water micelles as soft templates. The products were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron micrograph (SEM), which confirmed the composition of the substances and their unique nanotube structures. Furthermore, the formation mechanism of the PBAs nanotubes was discussed and provided useful insight for further synthesis of nanotubes of other Prussian blue analogues.