Browse > Article
http://dx.doi.org/10.4014/jmb.0805.321

Energy Generation Coupled to Azoreduction by Membranous Vesicles from Shewanella decolorationis S12  

Hong, Yi-Guo (Key Laboratory of Tropical Marine Environment Dynamics (LED), South China Sea Institute of Oceanology, Chinese Academy of Science)
Guo, Jun (Guangdong Institute of Microbiology)
Sun, Guo-Ping (Guangdong Institute of Microbiology)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.1, 2009 , pp. 37-41 More about this Journal
Abstract
Previous studies have demonstrated that Shewanella decolorationis S12 can grow on the azo compound amaranth as the sole electron acceptor. Thus, to explore the mechanism of energy generation in this metabolism, membranous vesicles (MVs) were prepared and the mechanism of energy generation was investigated. The membrane, which was fragmentized during preparation, automatically formed vesicles ranging from 37.5-112.5 nm in diameter under electron micrograph observation. Energy was conserved when coupling the azoreduction by the MVs of an azo compound or Fe(III) as the sole electron acceptor with $H_2$, formate, or lactate as the electron donor. The amaranth reduction by the vesicles was found to be inhibited by specific respiratory inhibitors, including $Cu^{2+}$ ions, dicumarol, stigmatellin, and metyrapone, indicating that the azoreduction was indeed a respiration reaction. This finding was further confirmed by the fact that the ATP synthesis was repressed by the ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD). Therefore, this study offers solid evidence of a mechanism of microbial dissimilatory azoreduction on a subcell level.
Keywords
Membranous vesicles; azoreduction; energy conservation; Shewanella decolorationis S12;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Chung, K. T., G. E. Fulk, and M. Egan. 1978. Reduction of azo dyes by intestinal anaerobes. Appl. Environ. Microbiol. 35: 558-562   PUBMED   ScienceOn
2 Esteve-Nunez, A., G. Lucchesi, B. Philipp, B. Schink, and J. L. Ramos. 2000. Respiration of 2,4,6-trinitrotoluene by Pseudomonas sp. strain JLR11. J. Bacteriol. 182: 1352-1355   DOI   ScienceOn
3 Fernandez, V. M., M. L. Rua, P. Reyes, R. Cammack, and E. C. Hatchikian. 1989. Inhibition of Desulfovibrio gigas hydrogenase with copper salts and other metal ions. Eur. J. Biochem. 185:449-454   DOI   ScienceOn
4 Ghiorse, W. C. and H. L. Ehrlich. 1976. Electron transport components of the $MnO_2$ reductase system and the location of the terminal reductase in a marine Bacillus. Appl. Environ. Microbiol. 31: 977-985   PUBMED   ScienceOn
5 Hirata, H., K. Altendorf, and F. M. Harold. 1974. Energy coupling in membrane vesicles of Escherichia coli. J. Biol. Chem. 249: 2939-2945   PUBMED
6 Hong, Y., J. Guo, Z. Xu, M. Xu, and G. Sun. 2007. Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12. J. Microbiol. Biotechnol. 17: 428-437   과학기술학회마을   PUBMED   ScienceOn
7 Kaback, H. R. 1974. Transport studies in bacterial membrane vesicles. Science 186: 882-892   DOI   PUBMED   ScienceOn
8 Louie, T. M. and W. W. Mohn. 1999. Evidence for a chemiosmotic model of dehalorespiration in Desulfomonile tiedjei DCB-1. J. Bacteriol. 181: 41-46
9 Maguire, R. J. 1992. Occurrence and persistence of dyes in a Canadian river. Water Sci. Technol. 25: 265-270   ScienceOn
10 Mitchell, P. 1979. Compartmentation and communication in living systems. Ligand conduction: A general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur. J. Biochem. 95: 1-20   DOI   ScienceOn
11 Ouchane, S., I. Agalidis, and C. Astier. 2002. Natural resistance to inhibitors of the ubiquinol cytochrome c oxidoreductase of Rubrivivax gelatinosus: Sequence and functional analysis of the cytochrome bc1 complex. J. Bacteriol. 184: 3815-3822   DOI   ScienceOn
12 Sapra, R., K. Bagramyan, and M. W. W. Adams. 2003. A simple energy-conserving system: Proton reduction coupled to proton translocation. Proc. Natl. Acad. Sci. USA 100: 7545-7550   DOI   ScienceOn
13 Mitchell, P. 1979. Keilin's respiratory chain concept and its chemiosmotic consequences. Science 206: 1148-1159   DOI   PUBMED   ScienceOn
14 Chung, K. T. and C. E. Cerniglia. 1992. Mutagenicity of azo dyes: Structure-activity relationships. Mutat. Res. 77: 201-220   DOI   ScienceOn
15 Pearcea, C. I., J. R. Lloydb, and J. T. Guthriea. 2003. The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes Pigments 58: 179-196   DOI   ScienceOn
16 Arnold, R. G., T. J. DiChristina, and M. R. Hoffmann. 1986. Inhibitor studies of dissimilative Fe(III) reduction by Pseudomonas sp. strain 200 ('Pseudomonas ferrireductans'). Appl. Environ. Microbiol. 52: 281-289   PUBMED   ScienceOn
17 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   PUBMED   ScienceOn
18 Gerencs$\acute{e}$r, L., L. Rinyu, L. K$\acute{a}$lm$\acute{a}$n, E. Takahashi, C. A. Wraight, and P. Mar$\acute{o}$ti. 2004. Competitive binding of quinone and antibiotic stigmatellin to reaction centers of photosynthetic bacteria. Acta Biol. Szegediensis 48: 25-33
19 Williams, P. A., J. Cosme, D. M. Vinkovic, A. Ward, H. C. Angove, P. J. Day, C. Vonrhein, I. J. Tickle, and H. Jhoti. 2004. Crystal structures of human cytochrome $P_{450}3AB_{4B}$bound to metyrapone and progesterone. Science 305: 683-686   DOI   PUBMED   ScienceOn
20 Xu, M., J. Guo, Y. Cen, X. Zhong, W. Cao, and G. Sun. 2005. Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from an activated sludge of a waste-water treatment plant. Int. J. Syst. Evol. Microbiol. 55: 363-368   DOI   ScienceOn
21 Stolz, A. 2001. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 56: 69-80   DOI   PUBMED   ScienceOn
22 Altendorf, K. H. and L. A. Staehelin. 1974. Orientation of membrane vesicles from Escherichia coli as detected by freezecleave electron microscopy. J. Bacteriol. 117: 888-899   PUBMED
23 Bumpus, J. A. 1995. Microbial degradation of azo dyes. Prog. Ind. Microbiol. 32: 157-176   DOI
24 Banat, I. M., P. Nigam, D. Singh, and R. Marchant. 1996. Microbial decolorization of textile-dye-containing effluents: A review. Biores. Technol. 58: 217-227   DOI   ScienceOn
25 Brown, M. A. and S. C. DeVito. 1993. Predicting azo dye toxicity. Crit. Rev. Environ. Sci. Technol. 23: 249-324   DOI   ScienceOn
26 Miller, T. L. and M. L. Wolin. 1974. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27: 985-987   PUBMED   ScienceOn
27 Hong, Y., J. Guo, Z. Xu, X. Chen, M. Xu, and G. Sun. 2007 Respiration and growth of Shewanella decolorationis S12 with azo compound as sole electron acceptor. Appl. Environ. Microbiol. 73: 64-72   DOI   ScienceOn