• Title/Summary/Keyword: Electron linear accelerators

Search Result 18, Processing Time 0.025 seconds

Evaluation of Shielding Performance of 3D Printer Materials for High-energy Electron Radiation Therapy (고 에너지 전자선 치료를 위한 3D 프린터 물질의 차폐 성능평가)

  • Chang-Woo, Oh;Sang-Il, Bae;Young-Min, Moon;Hyun-Kyoung, Yang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.687-695
    • /
    • 2022
  • To find a 3D printer material that can replace lead used as a shield for high-energy electron beam treatment, the shielding composites were simulated by using MCNP6 programs. The Percent Depth Dose (PDD), Flatness, and Symmetry of linear accelerators emitting high-energy electron beams were measured, and the linear accelerator was compared with MCNP6 after simulation, confirming that the source term between the actual measurement and simulation was consistent. By simulating the lead shield, the appropriate thickness of the lead shield capable of shielding 95% or more of the absorbed dose was selected. Based on the absorption dose data for lead shield with a thickness of 3 mm, the shielding performance was analyzed by simulating 1, 5, 10, and 15 mm thicknesses of ABS+W (10%), ABS+Bi (10%), and PLA+Fe (10%). Each prototype was manufactured with a 3D printer, measured and analyzed under the same conditions as in the simulation, and found that when ABS+W (10%) material was formed to have a thickness of at least 10mm, it had a shielding performance that could replace lead with a thickness of 3mm. The surface morphology and atomic composition of the ABS+W (10%) material were evaluated using a scanning electron microscope (SEM) and an energy dispersive X-ray spectrometer (EDS). From these results, it was confirmed that replacing the commercialized lead shield with ABS+W (10%) material not only produces a shielding effect such as lead, but also can be customized to patients using a 3D printer, which can be very useful for high-energy electron beam treatment.

Fabrication of Backscatter Electron Cones for Radiation Therapy (산란전자선을 이용한 강내측방조사기구의 제작과 특성)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.74-80
    • /
    • 2001
  • Purpose : Irradiation cones by using backscatter electrons are made for the treatment of superficial small lesions of skin, oral cavity, and rectum where a significant dose gradient and maximum surface dose is desired. Methods and Materials : Backscatter electrons are produced from the primary electron beams from the linear accelerators. The design consists of a cylindrical cone that has a thick circular plate of high atomic number medium (Pb or Cu) attached to the distal end, and the plate can be adjusted the reflected angle. Primary electrons strike the metal plate perpendicularly and produce backscatter electrons that reflect through the lateral hole for treatment. Using film and a parallel plate ion chamber, backscatter electron dose characteristics are measured. Results : The depth dose characteristic of the backscatter electron is very similar to that of the hard x-ray beam that is commonly used for the intracavitary and superficial lesions. The basckscatter electron energy is nearly constant and effectively about 1.5 MeV from the clinical megavoltage beams. The backscatter electron dose rate of $35\~85\;cGy/min$ could be achieved from modern accelerators without any modification. and the depth in water of $50\%$ depth dose from backscatter electron located at 6mm for $45^{\circ}$ angled lead scatter. The beam flatness is dependent on the slit size and the depth of treatment, but is satisfactory to treat small lesions. Conclusions : The measured data for backscatter electron energy, depth dose flatness dose rate and absolute dose indicates that the backscatter electrons are suitable for clinical use.

  • PDF

Analysis of Output Constancy Checks Using Process Control Techniques in Linear Accelerators (선형가속기의 출력 특성에 대한 공정능력과 공정가능성을 이용한 통계적 분석)

  • Oh, Se An;Yea, Ji Woon;Kim, Sang Won;Lee, Rena;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.185-192
    • /
    • 2014
  • The purpose of this study is to evaluate the results for the quality assurance through a statistical analysis on the output characteristics of linear accelerators belonging to Yeungnam University Medical Center by using the Shewhart-type chart, Exponentially weighted moving average chart (EWMA) chart, and process capability indices $C_p$ and $C_{pk}$. To achieve this, we used the output values measured using respective treatment devices (21EX, 21EX-S, and Novalis Tx) by medical physicists every month from September, 2012 to April, 2014. The output characteristics of treatment devices followed the IAEA TRS-398 guidelines, and the measurements included photon beams of 6 MV, 10 MV, and 15 MV and electron beams of 4 MeV, 6 MeV, 9 MeV, 12 MeV, 16MeV, and 20 MeV. The statistical analysis was done for the output characteristics measured, and was corrected every month. The width of control limit of weighting factors and measurement values were calculated as ${\lambda}=0.10$ and L=2.703, respectively; and the process capability indices $C_p$ and $C_{pk}$ were greater than or equal to 1 for all energies of the linear accelerators (21EX, 21EX-S, and Novalis Tx). Measured values of output doses with drastic and minor changes were found through the Shewhart-type chart and EWMA chart, respectively. The process capability indices $C_p$ and $C_{pk}$ of the treatment devices in our institution were, respectively, 2.384 and 2.136 for 21EX, 1.917 and 1.682 for 21EX-S, and 2.895 and 2.473 for Novalis Tx, proving that Novalis Tx has the most stable and accurate output characteristics.

A Study on the Application of PbI2 Dosimetry for QA in the Electron Beam Therapy (전자선 치료의 선량 측정 QA를 위한 PbI2 선량계 적용 연구)

  • Yang, Seungwoo;Han, Moojae;Jung, Jaehoon;Choi, Yunseon;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.517-522
    • /
    • 2020
  • Electron beam have many factors that affect dose distribution, so even if identical settings are used, they should be identified and used for radiation treatment, and the effects on the structures in the body are sensitive, making it difficult to investigate uniform dose distribution on tumors. In this study, a dosimeter was produced using PbI2 which is a photoelectric material, and electrical characteristics were analyzed for 6, 9, and 12 MeV electronics in linear accelerators. The reproducibility test results showed that RSD were 1.1215%, 1.0160%, and 0.05137% respectively at 6, 9, and 12 MeV energies, indicating that the output signals were stable. The linearity evaluation results showed that the R2 values of the reliability indicator for straight line trend lines were 0.9999, 0.9999, and 0.9994, respectively, at 6, 9, and 12 MeV, to confirm that the output signal was proportional to PbI2 as dose increased. The PbI2 dosimeter in this study is judged to be highly applicable to electromagnet measurement and is thought to be able to be used as a basic study of electron detector through photoelectric material.

Monte Carlo Algorithm-Based Dosimetric Comparison between Commissioning Beam Data across Two Elekta Linear Accelerators with AgilityTM MLC System

  • Geum Bong Yu;Chang Heon Choi;Jung-in Kim;Jin Dong Cho;Euntaek Yoon;Hyung Jin Choun;Jihye Choi;Soyeon Kim;Yongsik Kim;Do Hoon Oh;Hwajung Lee;Lee Yoo;Minsoo Chun
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.150-157
    • /
    • 2022
  • Purpose: Elekta synergy® was commissioned in the Seoul National University Veterinary Medical Teaching Hospital. Recently, Chung-Ang University Gwang Myeong Hospital commissioned Elekta Versa HDTM. The beam characteristics of both machines are similar because of the same AgilityTM MLC Model. We compared measured beam data calculated using the Elekta treatment planning system, Monaco®, for each institute. Methods: Beam of the commissioning Elekta linear accelerator were measured in two independent institutes. After installing the beam model based on the measured beam data into the Monaco®, Monte Carlo (MC) simulation data were generated, mimicking the beam data in a virtual water phantom. Measured beam data were compared with the calculated data, and their similarity was quantitatively evaluated by the gamma analysis. Results: We compared the percent depth dose (PDD) and off-axis profiles of 6 MV photon and 6 MeV electron beams with MC calculation. With a 3%/3 mm gamma criterion, the photon PDD and profiles showed 100% gamma passing rates except for one inplane profile at 10 cm depth from VMTH. Gamma analysis of the measured photon beam off-axis profiles between the two institutes showed 100% agreement. The electron beams also indicated 100% agreement in PDD distributions. However, the gamma passing rates of the off-axis profiles were 91%-100% with a 3%/3 mm gamma criterion. Conclusions: The beam and their comparison with MC calculation for each institute showed good performance. Although the measuring tools were orthogonal, no significant difference was found.

Implementation and Evaluation of the Electron Arc Plan on a Commercial Treatment Planning System with a Pencil Beam Algorithm (Pencil Beam 알고리즘 기반의 상용 치료계획 시스템을 이용한 전자선 회전 치료 계획의 구현 및 정확도 평가)

  • Kang, Sei-Kwon;Park, So-Ah;Hwang, Tae-Jin;Cheong, Kwang-Ho;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.304-310
    • /
    • 2010
  • Less execution of the electron arc treatment could in large part be attributed to the lack of an adequate planning system. Unlike most linear accelerators providing the electron arc mode, no commercial planning systems for the electron arc plan are available at this time. In this work, with the expectation that an easily accessible planning system could promote electron arc therapy, a commercial planning system was commissioned and evaluated for the electron arc plan. For the electron arc plan with use of a Varian 21-EX, Pinnacle3 (ver. 7.4f), with an electron pencil beam algorithm, was commissioned in which the arc consisted of multiple static fields with a fixed beam opening. Film dosimetry and point measurements were executed for the evaluation of the computation. Beam modeling was not satisfactory with the calculation of lateral profiles. Contrary to good agreement within 1% of the calculated and measured depth profiles, the calculated lateral profiles showed underestimation compared with measurements, such that the distance-to-agreement (DTA) was 5.1 mm at a 50% dose level for 6 MeV and 6.7 mm for 12 MeV with similar results for the measured depths. Point and film measurements for the humanoid phantom revealed that the delivered dose was more than the calculation by approximately 10%. The electron arc plan, based on the pencil beam algorithm, provides qualitative information for the dose distribution. Dose verification before the treatment should be mandatory.

A Commissioning of 3D RTP System for Photon Beams

  • Kang, Wee-Saing
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.119-120
    • /
    • 2002
  • The aim is to urge the need of elaborate commissioning of 3D RTP system from the firsthand experience. A 3D RTP system requires so much data such as beam data and patient data. Most data of radiation beam are directly transferred from a 3D dose scanning system, and some other data are input by editing. In the process inputting parameters and/or data, no error should occur. For RTP system using algorithm-bas ed-on beam-modeling, careless beam-data processing could also cause the treatment error. Beam data of 3 different qualities of photon from two linear accelerators, patient data and calculated results were commissioned. For PDD, the doses by Clarkson, convolution, superposition and fast superposition methods at 10 cm for 10${\times}$10 cm field, 100 cm SSD were compared with the measured. An error in the SCD for one quality was input by the service engineer. Whole SCD defined by a physicist is SAD plus d$\sub$max/, the value was just SAD. That resulted in increase of MU by 100${\times}$((1_d$\sub$max//SAD)$^2$-1)%. For 10${\times}$10 cm open field, 1 m SSD and at 10 cm depth in uniform medium of relative electron density (RED) 1, PDDs for 4 algorithms of dose calculation, Clarkson, convolution, superposition and fast-superposition, were compared with the measured. The calculated PDD were similar to the measured. For 10${\times}$10 cm open field, 1 m SSD and at 10 cm depth with 5 cm thick inhomogeneity of RED 0.2 under 2 cm thick RED 1 medium, PDDs for 4 algorithms were compared. PDDs ranged from 72.2% to 77.0% for 4 MV X-ray and from 90.9% to 95.6% for 6 MV X-ray. PDDs were of maximum for convolution and of minimum for superposition. For 15${\times}$15 cm symmetric wedged field, wedge factor was not constant for calculation mode, even though same geometry. The reason is that their wedge factor is considering beam hardness and ray path. Their definition requires their users to change the concept of wedge factor. RTP user should elaborately review beam data and calculation algorithm in commissioning.

  • PDF

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.