• Title/Summary/Keyword: Electron beam system

Search Result 407, Processing Time 0.03 seconds

Measurement of ion-induced secondary electron emission coefficient for MgO thin film with $O_{2}$ plasma treatment

  • Jeong, H.S.;Oh, J.S.;Lim, J.Y.;Cho, J.W.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.802-805
    • /
    • 2003
  • The ion-induced secondary electron emission coefficient ${\gamma}$ for MgO thin film with $O_{2}$ plasma treatment has been investigated by ${\gamma}$-FIB (focused ion beam) system. The MgO thin film deposited from sintered material with $O_2$ plasma treatment is found to have higher ${\gamma}$ than that without $O_{2}$ plasma treatment. The energy of $Ne^{+}$ ions used has been ranged from 100eV to 200eV throughout this experiment. It is found that the highest secondary electron emission coefficient ${\gamma}$ has been achieved for 10 minutes of $O_{2}$ plasma treatment.

  • PDF

Design and Analysis of an Objective Lens for a Scanning Electron Microscope by Coupling FE Analysis and Ray Tracing (유한요소해석과 광선추적을 연계한 주사전자 현미경 대물렌즈의 설계 및 해석)

  • Park, Keun;Lee, Jae-Jin;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.92-98
    • /
    • 2009
  • The scanning electron microscope (SEM) contains an electron optical system in which electrons are emitted and moved to form a focused beam, and generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present study covers the design and analysis of an objective lens for a thermionic SEM. A finite element (FE) analysis for the objective lens is performed to analyze its magnetic characteristics for various lens designs. Relevant beam trajectories are also investigated by tracing the ray path of the electron beams under the magnetic fields inside the objective lens.

Influence of surface geometrical structures on the secondary electron emission coefficient $({\gamma})$ of MgO protective layer

  • Park, W.B.;Lim, J.Y.;Oh, J.S.;Jeong, H.S.;Jeong, J.C.;Kim, S.B.;Cho, I.R.;Cho, J.W.;Kang, S.O.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.806-809
    • /
    • 2003
  • Ion-induced secondary electron emission coefficient $({\gamma})$. of the patterned MgO thin film with geometrical structures has been measured by ${\gamma}$ - FIB(focused ion beam) system. The patterned MgO thin film with geometrical structures has been formed by the mask (mesh of ${\sim}$ $10{\mu}m^{2})$ under electron beam evaporation method. It is found that the higher ${\gamma}$. has been achieved by the patterned MgO thin film than the normal ones without patterning.

  • PDF

Evaluation of Dyeing Properties of Modified Polypropylene Fibers by Electron Beam Irradiation (전자선조사에 의한 폴리프로필렌 섬유의 개질 및 염기성염료의 염착특성)

  • Kim, Hong-Je;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Dyeing properties of hydrophobic polypropylene fibers using cationic dyes were investigated to improve dyeability by electron beam irradiation and sulfonic acid incorporation. The color strength of irradiated polypropylene fibers was examined according to the dyeing conditions including pH of dyebath, absorbed doses, and introduction of functional group to fiber substrate. The best dyeing result was obtained when sulfonic acid group incorporated polypropylene fibers after electron beam irradiation were dyed with cationic dyes at alkaline conditions and 30$\sim$75kGy irradiation ranges.

Effects of Electron Beam Irradiation on Tribological and Physico-chemical Properties of Polyoxymethylene (POM-C) copolymer

  • Rahman, Md. Shahinur;Yang, Jong-Keun;Shaislamov, Ulugbek;Lyakhov, Konstantin;Kim, Min-Seok;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.153-153
    • /
    • 2016
  • Polyoxymethylene copolymer (POM-C) is an attractive and widely used engineering thermoplastic across many industrial sectors owing to outstanding physical, mechanical, self-lubricating and chemical properties. In this research work, the POM-C blocks were irradiated with 1 MeV electron beam energy in five doses (100, 200, 300, 500 and 700 KGy) in vacuum condition at room temperature. The tribological and physico-chemical properties of electron beam irradiated POM-C blocks have been analyzed using Pin on disk tribometer, Raman spectroscopy, SEM-EDS, Optical microscopy, 3D Nano surface profiler system and Contact angle analyzer. Electron beam irradiation at a dose of 100 kGy resulted in a decrease of the friction coefficient and wear loss of POM-C block due to well suited cross-linking, carbonization, free radicals formation and energetic electrons-atoms collisions (physical interaction). It also shows lowest surface roughness and highest water contact angle among all unirradiated and irradiated POM-C blocks. The irradiation doses at 200, 300, 500 and 700 kGy resulted in increase of the friction coefficient as compared to unirradiated POM-C block due to severe chain scission, chemical and physical structural degradation. The electron beam irradiation transferred the wear of unirradiated POM-C block from the abrasive wear, adhesive wear and scraping to mild scraping for the 1 MeV, 100 kGy irradiated POM-C block which is concluded from SEM-EDS and Optical microscopic observations. The degree of improvement for tribological attribute relies on the electron beam irradiation condition (energy and dose rate).

  • PDF

Synthesis of TiO2 nanoparticles induced by electron beam irradiation and their electrochemical performance as anode materials for Li-ion batteries

  • Ahn, Ja-Hwa;Eom, Ji-Yong;Kim, Jong-Huy;Kim, Hye Won;Lee, Byung Cheol;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.75-80
    • /
    • 2015
  • We introduce a new synthesis method to prepare small TiO2 nanoparticles with a narrow particle size distribution, which is achieved by electron beam (E-beam) irradiation. The effects of E-beam irradiation on the synthesis of TiO2 nanoparticles and the electrochemical performance of TiO2 nanoparticles as alternative anode materials for Li-ion batteries are investigated. The TiO2 nanoparticles induced by E-beam irradiation present better cycling performance and rate capability than the TiO2 nanoparticles synthesized by normal hydrolysis reaction. The better electrochemical performance is attributed to small particle size and narrow particle size distribution, resulting in the large surface area that provides innumerable reaction sites and short diffusion length for Li+ through TiO2 nanoparticles.

Influence of sintering temperature of MgO pellet on the electro-optical characteristics of alternating current plasma display panel (AC-PDP)

  • Hong, Sung-Hee;Son, Chang-Gil;Jung, Seok;Kim, Jung-Seok;Paik, Jong-Hoo;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.400-403
    • /
    • 2008
  • We have investigated the electro-optical characteristics of AC-PDP with different MgO protective layers, which have been deposited by electron beam evaporation from various sintered pellets with different temperatures. We have measured the secondary electron emission coefficient ($\gamma$) by using the Gamma Focused Ion Beam ($\gamma$-FIB) system, the static margin, and the address delay time. Also, we have investigated photoluminescence (PL) characteristics for understanding the energy levels of MgO pellets and protective layers.

  • PDF

QMF Ion Beam System Development for Oxide Etching Mechanism Study (산화막 식각 기구 연구를 위한 QMF Ion Beam 장치의 제작)

  • 주정훈
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.4
    • /
    • pp.220-225
    • /
    • 2004
  • A new ion beam extraction system is designed using a simple ion mass filter and a micro mass balance and a QMS based detecting system. A quadrupole Mass Filter is used for selective ion beam formation from inductively coupled high density plasma sources with appropriate electrostatic lens and final analyzing QMS. Also a quartz crystal microbalance is set between a QMF and a QMS to measure the etching and polymerization rate of the mass selected ion beam. An inductively coupled plasma was used as a ion/radical source which had an electron temperature of 4-8 eV and electron density of $4${\times}$10^{11}$#/㎤. A computer interfaced system through 12bit AD-DA board can control the pass ion mass of the qmf by setting RF/DC voltage ratio applied to the quadrupoles so that time modulation of pass ion's mass is possible. So the direct measurements of ion - surface chemistry can be possible in a resolution of $1\AA$/sec based on the qcm's sensitivity. A full set of driving software and hardware setting is successfully carried out to get fundamental plasma information of the ICP source and analysed $Ar^{+}$ beam was detected at the $2^{nd}$ QMS.