• Title/Summary/Keyword: Electron beam lithography

Search Result 168, Processing Time 0.025 seconds

Studies on the MIMIC Power Amplifier using the AlGaAs/InGaAs/GaAs PHEMT (AlGaAs/InGaAs/GaAs PHEMT를 이용한 MIMIC Power Amplifier 제작 연구)

  • Lee, Seong-Dae;Chae, Yeon-Sik;Yun, Yong-Sun;Yun, Jin-Seop;Lee, Eung-Ho;Lee, Jin-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • 0.35 ${\mu}{\textrm}{m}$-gate AlGaAs/InGaAs PHEMTs have been fabricated using electron beam lithography. DC and AC characteristics of PHEMTs having different gate widths and number of fingers were measured at various bias conditions. An MIMIC power amplifier operating at 35 GHz has been designed and fabricated using passive element library. The power amplifier showed gain and input reflection coefficient of 7.9 ㏈ and -15 ㏈, respectively, at 27.6 GHz.

  • PDF

Directly Nano-precision Feature Patterning on Thin Metal Layer using Top-down Building Approach in nRP Process (나노 복화공정의 역방향 적층법을 이용한 직접적 나노패턴 생성에 관한 연구)

  • 박상후;임태우;양동열;공홍진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.153-159
    • /
    • 2004
  • In this study, a new process to pattern directly on a thin metal layer using improved nano replication printing (nRP) process is suggested to evaluate the possibilities of fabricating a stamp for nano-imprinting. In the nRP process, any figure can be replicated from a bitmap figure file in the range of several micrometers with nano-scaled details. In the process, liquid-state resins are polymerized by two-photon absorption which is induced by femto-second laser. A thin gold layer was sputtered on a glass plate and then, designed patterns or figures were developed on the gold layer by newly developed top-down building approach. Generally, stamps fur nano-imprinting have been fabricated by using the costly electron-beam lithography process combined with a reactive ion-etching process. Through this study, the effectiveness of the improved nRP process is evaluated to make a stamp with the resolution of around 200nm with reduced cost.

Synthesis of Single-Walled Carbon Nanotubes for Enhancement of Horizontal-Alignment and Density (단일벽 탄소나노튜브의 수평배향도 및 밀도 향상 합성)

  • Kwak, Eun-Hye;Im, Ho-Bin;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.347-353
    • /
    • 2014
  • We present a synthesis of single-walled carbon nanotubes(SWNTs) for enhancement of parallel-alignment and density using chemical vapor deposition with methane feed gas. As-purchased ST-cut quartz substrates were heat-treated and line-patterned by electron-beam lithography in order to grow SWNTs with parallel alignment. We investigated the effects of various synthesis parameters such as catalyst oxidation, reduction, and synthesis conditions in order to enhance both tube density and degree of parallel alignment. The condition of $1{\AA}$ of Fe catalyst film, atmospheric oxidation at $750^{\circ}C$ for 10 min, reduction under 400 Torr for 5 min, and growth at $865^{\circ}C$ under 300 Torr yields $33tubes/10{\mu}m$, which is the highest tube density with parallel alignment. Based on the results of atomic force microscope and Raman spectroscopy, it was found that SWNTs have diameter range of 0.8-2.0 nm. We believe that the present work would contribute to the development of SWNTs-based flexible functional devices.

The Fabrication and Magnetoresistance of Nanometer-sized Spin Device Driven by Current Perpendicular to the Plane (수직전류 인가형 나노 스핀소자의 제조 및 자기저항 특성)

  • Chun, M.G.;Lee, H.J.;Jeung, W.Y.;Kim, K.Y.;Kim, C.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.61-66
    • /
    • 2005
  • In order to make submicron cell for spin-injection device, lift-off method using Pt stencil and wet etching was chosen. This approach allows batch fabrication of stencil substrate with electron-beam lithography. It simplifies the process between magnetic film stack deposition and final device testing, thus enabling rapid turnaround in sample fabrication. Submicron junctions with size of $200nm{\times}300nm$ and $500nm{\times}500nm$ 500 nm and pseudo spin valve structure of $CoFe(30{\AA})/Cu(100{\AA})/CoFe(120{\AA}$) was deposited into the nanojunctions. MR ratio was 0.8 and $1.1{\%}$, respectively and spin transfer effect was confirmed with critical current of $7.65{\times}10^7A/cm^2$.

LED Beam Shaping and Fabrication of Optical Components for LED-Based Fingerprint Imager (LED 빔조형에 의한 초소형 이미징 장치의 제조 기술)

  • Joo, Jae-Young;Song, Sang-Bin;Park, Sun-Sub;Lee, Sun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1189-1193
    • /
    • 2012
  • The Miniaturized Fingerprint Imager (MFI) is a slim optical mouse that can be used as an input device for application to wireless portable personnel communication devices such as smartphones. In this study, we have fabricated key optical components of an MFI, including the illumination optical components and imaging lens. An LED beam-shaping lens consisting of an aspheric lens and a Fresnel facet was successfully machined using a diamond turning machine (DTM). A customized V-shaped groove for beam path banding was fabricated by the bulk micromachining of silicon that was coated with aluminum using the shadow effect in thermal evaporation. The imaging lens and arrayed multilevel Fresnel lenses were fabricated by electron beam lithography and FAB etching, respectively. The proposed optical components are extremely compact and have high optical efficiency; therefore, they are applicable to ultraslim optical systems.

Efficacy and Accuracy of Patient Specific Customize Bolus Using a 3-Dimensional Printer for Electron Beam Therapy (전자선 빔 치료 시 삼차원프린터를 이용하여 제작한 환자맞춤형 볼루스의 유용성 및 선량 정확도 평가)

  • Choi, Woo Keun;Chun, Jun Chul;Ju, Sang Gyu;Min, Byung Jun;Park, Su Yeon;Nam, Hee Rim;Hong, Chae-Seon;Kim, MinKyu;Koo, Bum Yong;Lim, Do Hoon
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.64-71
    • /
    • 2016
  • We develop a manufacture procedure for the production of a patient specific customized bolus (PSCB) using a 3D printer (3DP). The dosimetric accuracy of the 3D-PSCB is evaluated for electron beam therapy. In order to cover the required planning target volume (PTV), we select the proper electron beam energy and the field size through initial dose calculation using a treatment planning system. The PSCB is delineated based on the initial dose distribution. The dose calculation is repeated after applying the PSCB. We iteratively fine-tune the PSCB shape until the plan quality is sufficient to meet the required clinical criteria. Then the contour data of the PSCB is transferred to an in-house conversion software through the DICOMRT protocol. This contour data is converted into the 3DP data format, STereoLithography data format and then printed using a 3DP. Two virtual patients, having concave and convex shapes, were generated with a virtual PTV and an organ at risk (OAR). Then, two corresponding electron treatment plans with and without a PSCB were generated to evaluate the dosimetric effect of the PSCB. The dosimetric characteristics and dose volume histograms for the PTV and OAR are compared in both plans. Film dosimetry is performed to verify the dosimetric accuracy of the 3D-PSCB. The calculated planar dose distribution is compared to that measured using film dosimetry taken from the beam central axis. We compare the percent depth dose curve and gamma analysis (the dose difference is 3%, and the distance to agreement is 3 mm) results. No significant difference in the PTV dose is observed in the plan with the PSCB compared to that without the PSCB. The maximum, minimum, and mean doses of the OAR in the plan with the PSCB were significantly reduced by 9.7%, 36.6%, and 28.3%, respectively, compared to those in the plan without the PSCB. By applying the PSCB, the OAR volumes receiving 90% and 80% of the prescribed dose were reduced from $14.40cm^3$ to $0.1cm^3$ and from $42.6cm^3$ to $3.7cm^3$, respectively, in comparison to that without using the PSCB. The gamma pass rates of the concave and convex plans were 95% and 98%, respectively. A new procedure of the fabrication of a PSCB is developed using a 3DP. We confirm the usefulness and dosimetric accuracy of the 3D-PSCB for the clinical use. Thus, rapidly advancing 3DP technology is able to ease and expand clinical implementation of the PSCB.

Fabrication of 2D Bravais Nano Pattern and Growth of ZnO Nano Rods with Photonic Crystal Effect (2차원 Bravais Lattice를 가지는 나노 패턴 제조 및 광결정 효과를 가지는 ZnO 나노 기둥 성장)

  • Kim, Tae-Un;Moon, Jong-Ha;Kim, Seon-Hoon;Kim, Doo-Gun;Kim, Jin-Hyeok
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.697-702
    • /
    • 2011
  • Two-dimensional (2D) nano patterns including a two-dimensional Bravais lattice were fabricated by laser interference lithography using a two step exposure process. After the first exposure, the substrate itself was rotated by a certain angle, $90^{\circ}$ for a square or rectangular lattice, $75^{\circ}$ for an oblique lattice, and $60^{\circ}$ for a hexagonal lattice, and the $90^{\circ}$ and laser incident angle changed for rectangular and the $45^{\circ}$ and laser incident angle changed for a centered rectangular; we then carried out a second exposure process to form 2D bravais lattices. The band structure of five different 2D nano patterns was simulated by a beam propagation program. The presence of the band-gap effect was shown in an oblique and hexagonal structure. The oblique latticed ZnO nano-photonic crystal array had a pseudo-bandgap at a frequency of 0.337-0.375, 0.575-0.596 and 0.858-0.870. The hexagonal latticed ZnO nano-crystallite array had a pseudo-bandgap at a frequency of 0.335-0.384 and 0.585-0.645. The ZnO nano structure with an oblique and hexagonal structure was grown through the patterned opening window area by a hydrothermal method. The morphology of 2D nano patterns and ZnO nano structures were investigated by atomic force microscopy and scanning electron microscopy. The diameter of the opening window was approximately 250 nm. The height and width of ZnO nano-photonic crystals were 380 nm and 250 nm, respectively.

Fabrication of wrap-around gate nanostructures from electrochemical deposition (전기화학적 도금을 이용한 wrap-around 게이트 나노구조의 제작)

  • Ahn, Jae-Hyun;Hong, Su-Heon;Kang, Myung-Gil;Hwang, Sung-Woo
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.126-131
    • /
    • 2009
  • To overcome short channel effects, wrap-around field effect transistors have drawn a great deal of attention for their superior electrostatic coupling between the channel and the surrounding gate electrode. In this paper, we introduce a bottom-up technique to fabricate a wrap-around field effect transistor using silicon nanowires as the conduction channel. Device fabrication was consisted mainly of electron-beam lithography, dielectrophoresis to accurately align the nanowires, and the formation of gate electrode using electrochemical deposition. The electrolyte for electrochemical deposition was made up of non-toxic organic-based solution and liquid nitrogen was used as a method of maintaining the shape of polymethyl methacrylate(PMMA) during the process of electrochemical deposition. Patterned PMMA can be used as a nano-template to produce wrap-around gate nano-structures.

  • PDF

Thermoelectric properties of individual PbTe nanowires grown by a vapor transport method

  • Lee, Seung-Hyun;Jang, So-Young;Lee, Jun-Min;Roh, Jong-Wook;Park, Jeung-Hee;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.7-7
    • /
    • 2009
  • Lead telluride (PbTe) is a very promising thermoelectric material due to its narrow band gap (0.31 eV at 300 K), face-centered cubic structure and large average excitonic Bohr radius (46 nm) allowing for strong quantum confinement within a large range of size. In this work, we present the thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method. A combination of electron beam lithography and a lift-off process was utilized to fabricate inner micron-scaled Cr (5 nm)/Au (130 nm) electrodes of Rn (resistance of a near electrode), Rf (resistance of a far electrode) and a microheater connecting a PbTe nanowire on the grid of points. A plasma etching system was used to remove an oxide layer from the outer surface of the nanowires before the deposition of inner electrodes. The carrier concentration of the nanowire was estimated to be as high as $3.5{\times}10^{19}\;cm^{-3}$. The Seebeck coefficient of an individual PbTe nanowire with a radius of 68 nm was measured to be $S=-72{\mu}V/K$ at room temperature, which is about three times that of bulk PbTe at the same carrier concentration. Our results suggest that PbTe nanowires can be used for high-efficiency thermoelectric devices.

  • PDF

Quantum Hall Effect of CVD Graphene

  • Kim, Young-Soo;Park, Su-Beom;Bae, Su-Kang;Choi, Kyoung-Jun;Park, Myung-Jin;Son, Su-Yeon;Lee, Bo-Ra;Kim, Dong-Sung;Hong, Byung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.454-454
    • /
    • 2011
  • Graphene shows unusual electronic properties, such as carrier mobility as high as 10,000 $cm^2$/Vs at room temperature and quantum electronic transport, due to its electronic structure. Carrier mobility of graphene is ten times higher than that of Silicon device. On the one hand, quantum mechanical studies have continued on graphene. One of them is quantum Hall effect which is observed in graphene when high magnetic field is applied under low temperature. This is why two dimension electron gases can be formed on Graphene surface. Moreover, quantum Hall effect can be observed in room temperature under high magnetic field and shows fractional quantization values. Quantum Hall effect is important because quantized Hall resistances always have fundamental value of h/$e^2$ ~ 25,812 Ohm and it can confirm the quantum mechanical behaviors. The value of the quantized Hall resistance is extremely stable and reproducible. Therefore, it can be used for SI unit. We study to measure quantum Hall effect in CVD graphene. Graphene devices are made by using conventional E-beam lithography and RIE. We measure quantum Hall effect under high magnetic field at low temperature by using He4 gas closed loop cryostat.

  • PDF