Browse > Article
http://dx.doi.org/10.5695/JKISE.2014.47.6.347

Synthesis of Single-Walled Carbon Nanotubes for Enhancement of Horizontal-Alignment and Density  

Kwak, Eun-Hye (Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Im, Ho-Bin (Department of Nano Applied Engineering, Kangwon National University)
Jeong, Goo-Hwan (Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
Publication Information
Journal of the Korean institute of surface engineering / v.47, no.6, 2014 , pp. 347-353 More about this Journal
Abstract
We present a synthesis of single-walled carbon nanotubes(SWNTs) for enhancement of parallel-alignment and density using chemical vapor deposition with methane feed gas. As-purchased ST-cut quartz substrates were heat-treated and line-patterned by electron-beam lithography in order to grow SWNTs with parallel alignment. We investigated the effects of various synthesis parameters such as catalyst oxidation, reduction, and synthesis conditions in order to enhance both tube density and degree of parallel alignment. The condition of $1{\AA}$ of Fe catalyst film, atmospheric oxidation at $750^{\circ}C$ for 10 min, reduction under 400 Torr for 5 min, and growth at $865^{\circ}C$ under 300 Torr yields $33tubes/10{\mu}m$, which is the highest tube density with parallel alignment. Based on the results of atomic force microscope and Raman spectroscopy, it was found that SWNTs have diameter range of 0.8-2.0 nm. We believe that the present work would contribute to the development of SWNTs-based flexible functional devices.
Keywords
Single-walled carbon nanotubes; Quartz; Horizontal alignment; Chemical vapor deposition; Atomic force microsope; Raman scattering spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. He, H. Jiang, B. Liu, P. V. Fedotov, A. I. Chernov, E. D. Obraztsova, F. Cavalca et al. Scientific Rep., 3 (2013) 14601.
2 J. Meyer, M. Paillet, T. Michel, A. Moreac, A. Neumann, G. Duesberg, S. Roth, J.-L. Sauvajol, Phys. Rev. Lett., 95 (2005) 217401.   DOI   ScienceOn
3 S. Iijima, T. Ichihashi, Nature, 363 (1993) 603.   DOI   ScienceOn
4 M. Shulaker, G. Hils, N. Patil, H. Wei, H. Chen, H. Wong, S. Mitra, Nature, 501 (2013) 526.   DOI
5 J. Valencia, T. Dienel, O. Groning, I. Shorubalko et al., Nature, 512 (2014) 61.   DOI
6 E. Joselevichi, Nano Res., 2 (2009) 743.   DOI
7 S. Han, X. Liu, C. Zhou, J. Am. Chem. Soc., 127 (2005) 5294.   DOI
8 S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, A. V. Rotkin, J. A. Rogers, Nat. Nanotechnol., 2 (2007) 230.   DOI   ScienceOn
9 D. Yuan, L. Ding, H. Chu, Y. Feng, T. McNicholas, J. Liu, Nano Lett., 8 (2008) 2576.   DOI   ScienceOn
10 J. Liu, C. Wang, X. Tu, B. Liu, L. Chen, M. Zheng, C. Zhou, Nat. Commun., 3 (2012) 1199.   DOI   ScienceOn
11 J. J. Kim, B. J. Lee, S. H. Lee, G. H. Jeong, Nanotechnol., 23 (2012) 105607.   DOI   ScienceOn
12 S. H. Lee, G. H. Jeong, Electron. Mater. Lett., 8 (2012) 5.   DOI   ScienceOn
13 C. Kocabas, S. H. Hur, A. Gaur, M. Meitl, M. Shim, J. Rogers, Small, 11 (2005) 1110.
14 P. Buffat, J-P. Borel, Phys. Rev. A 13 (1976) 2287.   DOI
15 A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M, Hunter, T. McClure et al. Phys. Rev. Lett., 86 (2001) 1118.   DOI   ScienceOn
16 P. M. Ajayan, L. D. Mark, Phys. Rev. Lett., 63 (1989) 279.   DOI   ScienceOn
17 H. Ago, K. Nakamura, K. Ikeda, N. Uehara, N. Ishigami, M. Tsuji, Chem. Phys. Lett., 408 (2005) 433.   DOI   ScienceOn