• Title/Summary/Keyword: Electron beam dosimetry

Search Result 60, Processing Time 0.024 seconds

Determination of Beam Quality Correction Factors for the PTW-Markus Chamber for Electron Beam Qualities R50=1.0 and 1.4 g/cm2 (전자선 선질 R50=1.0과 1.4 g/cm2에 대한 PTW-Markus 전리함의 선질보정인자 결정에 관한 연구)

  • Kim, Me Young;Rhee, Dong Joo;Moon, Young Min;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.178-184
    • /
    • 2015
  • The Markus ionization chamber(R) is a small plane parallel ionization chamber widely used in clinical electron beam dosimetry. Plane parallel chambers were recommended for low energy electron dosimetry with the beam quality at $R_{50}<4.0g/cm^2$ (${\bar{E}}{\approx}10MeV$) according to TRS-398 protocol. However, the quality correction factors ($k_{Q,Q_0}$) of the Markus chamber was not presented in TRS-398 protocol for electron beam quality at $R_{50}<2.0g/cm^2$ (${\bar{E}}{\approx}4MeV$). In this study, the $k_{Q,Q_0}$ factors of the Markus chambers (PTW-34045) for beam qualities at $R_{50}=1.0$, 1.4, 2.0, 2.5, 3.0, and $5.0g/cm^2$ were determined by Monte Carlo calculations (DOSRZnrc/EGSnrc) and the dosimetric formalism of quality correction factor. The derived $k_{Q,Q_0}$ values were evaluated using the produced data based on TRS-398 and TG-51 protocols and known values for the Markus chamber.

FTIR study of gamma and electron irradiated high-density polyethylene for high dose measurements

  • Al-Ghamdi, Hanan;Farah, Khaled;Almuqrin, Aljawharah;Hosni, Faouzi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.255-261
    • /
    • 2022
  • A reliable and well-characterized dosimetry system which is traceable to the international measurement system, is the key element to quality assurance in radiation processing with cobalt-60 gamma rays, X-rays, and electron beam. This is specifically the case for health-regulated processes, such as the radiation sterilization of single use medical devices and food irradiation for preservation and disinfestation. Polyethylene is considered to possess a lot of interesting dosimetric characteristics. In this work, a detailed study has been performed to determine the dosimetric characteristics of a commercialized high-density polyethylene (HDPE) film using Fourier transformed infrared spectrometry (FTIR). Correlations have been established between the absorbed dose and radiation induced infrared absorption in polyethylene having a maximum at 965 cm-1 (transvinylene band) and 1716 cm-1 (ketone-carbonyl band). We have found that polyethylene dose-response is linear with dose for both bands up to1000 kGy. For transvinylene band, the dose-response is more sensitive if irradiations are made in helium. While, for ketone-carbonyl band, the dose-response is more sensitive when irradiations are carried out in air. The dose-rate effect has been found to be negligible when polyethylene samples are irradiated with electron beam high dose rates. The irradiated polyethylene is relatively stable for several weeks after irradiation.

Determination of Absorbed Dose for Gafchromic EBT3 Film Using Texture Analysis of Scanning Electron Microscopy Images: A Feasibility Study

  • So-Yeon Park
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.158-163
    • /
    • 2022
  • Purpose: We subjected scanning electron microscopic (SEM) images of the active layer of EBT3 film to texture analysis to determine the dose-response curve. Methods: Uncoated Gafchromic EBT3 films were prepared for direct surface SEM scanning. Absorbed doses of 0-20 Gy were delivered to the film's surface using a 6 MV TrueBeam STx photon beam. The film's surface was scanned using a SEM under 100× and 3,000× magnification. Four textural features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) using the SEM images corresponding to each dose. We used R-square to evaluate the linear relationship between delivered doses and textural features of the film's surface. Results: Correlation resulted in higher linearity and dose-response curve sensitivity than Homogeneity, Contrast, or Energy. The R-square value was 0.964 for correlation using 3,000× magnified SEM images with 9-pixel offsets. Dose verification was used to determine the difference between the prescribed and measured doses for 0, 5, 10, 15, and 20 Gy as 0.09, 1.96, -2.29, 0.17, and 0.08 Gy, respectively. Conclusions: Texture analysis can be used to accurately convert microscopic structural changes to the EBT3 film's surface into absorbed doses. Our proposed method is feasible and may improve the accuracy of film dosimetry used to protect patients from excess radiation exposure.

Dose Characteristics for IORT Applicator of ML-15MDX Electron Beam (ML-15MDX 술중조사용 Applicator에 의한 전자선선량 특성)

  • Choi, Tae-Jin;Lee, Ho-Joon;Kim, Yeung-Ae;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.455-461
    • /
    • 1993
  • Experimental measurements of dose characteristics with pentagonal applicator at nominal energy of 4, 6, 9, 12 and 15 MeV electron beam were performed for intraoperative radiotherapy (IORT) in ML-15MDX linear accelerator. This paper presents the percent depth dose, surface dose, beam flatness and output factors of using the IORT applicator in different electron beam energy. The output factor showed as a 24 percent higher in IORT applicator than that of reference $10{\times}10cm^2$ applicator. The surface dose of using the IORT applicator showed 7.7 and 2.7 percent higher than that of reference field in 4 and 15 MeV electron beam, respectively. In our experiments, the variation of percent depth dose was very small but the output factor and flatnees at 0.5 cm depth have showed a large value in IORT applicator.

  • PDF

Fabrication and Characterization of a One-dimensional Fiber-optic Dosimeter for Electron Beam Therapy Dosimetry (치료용 전자선 계측을 위한 1차원 광섬유 방사선량계의 제작 및 특성분석)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Shin, Sang-Hun;Yoo, Wook-Jae;Jun, Jae-Hun;Lee, Bong-Soo;Moon, Joo-Hyun;Park, Byung-Gi
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2008
  • In this study, we have fabricated a one-dimensional fiber-optic dosimeter for electron beam therapy dosimetry. Each fiber-optic dosimeter has an organic scintillator with a plastic optical fiber and it is embedded and arrayed in the plastic phantom to measure one-dimensional high energy electron beam profile of clinical linear accelerator. The scintillating lights generated from each sensor probe are guided by plastic optical fibers to the multi-channel photodiode amplifier system. We have measured one-dimensional electron beam profiles in a PMMA phantom according to different field sizes and energies of electron beam. Also, the isodose and three-dimensional percent depth dose curves in a PMMA phantom are obtained using a one-dimensional fiber-optic dosimeter with different electron beam energies.

  • PDF

Measurement of Energy Parameters for Electron Gun Heater Currents and Output Dose Rate for Electron Beams from a Prototype Linac (연구용 선형가속기의 전자총 가열 전류에 따른 전자선의 에너지 인자 측정과 출력 측정 연구)

  • Lim, Heuijin;Lee, Manwoo;Kim, Me Young;Yi, Jungyu;Lee, Mujin;Kang, Sang Ku;Rhee, Dong Joo;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • The dosimetric characteristics were experimentally evaluated for electron beams from the prototype linac developed for radiotherapy units. This paper focuses on the electron beam output and energy variations as a function of electron gun heater current. The electron energy was derived from its mean and most probable energies measured by film dosimetry. The electron beam output at the maximum electron energy was measured with the plane parallel ionization chamber in water using TRS-398 dosimetry protocol. The mean energy and the most probable energy of the electron beam were 6.54~3.31 MeV and 5.94~2.80 MeV at electron gun current of 2.02~2.50 A respectively. The output dose rate for an electron beam of mean energy 6.54 MeV was 5.41 Gy/min ${\pm}1.5%$ at the reference depth in water.

A Study on Photon Dosimetry System with Diode Defectors (다이오드를 이용한 광자선 선량측정에 관한 연구)

  • Lee, D.H.;Kang, J.K.;Jang, Y.G.;Jee, Y.H.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.148-151
    • /
    • 1992
  • There is a definite requirement to continuously monitor the operating characteristics of radiation therapy machines. It is advisable to monitor the symmetry, flatness, and energy stability of x-ray beams. The semiconductor system was developed using commercially available rectifier diode for th assessment of quality assurance In radiation therapy, which is capable of the above measurements. The beam characteristics of 6MV, 10MV and 21MV photon of Microtron electron accelerator were measured using seven-diodes as detectors and the results were compared with that of using a film results dosimetry with a X-Y plotter. The seven-diode detetor is versatile enough to be used for checking beam profile, flatness, symmetry and energy.

  • PDF

Study of Acute Myelocytic Leukemia Patient Treatment That Used Total Skin Electron Beam (Total Skin Electron Beam을 이용한 급성 골수성 백혈병 환자 치료에 대한 연구)

  • Lee, Sang-Ryul;Kang, Min-Kyu;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.152-158
    • /
    • 2009
  • Total Skin Electron Beam Therapy (TSEBT) of linear accelerator has become use so as to be useful, 2~9 MeV of energy territories came to be used with mycosis fungoides and cutaneous lymphomas in the superficial lesion treatment which covers the major portion of the body. I treat a patient to Stanford technique in this study, and it is $60^{\circ}$ around the patients whom Stanford technique irradiated electronic beam to a linear accelerator in horizontal directions and there is a way a standard of TSEBT treat it to six located field (anterior, posterior, and four obliques) becoming. An each field does horizontally it and consist to beam of the two component which fitted the center to a suitable angle. a patient treats it to three dual field a day in order to make short treatment time. when a first day, we treat one dual field at anterior position and two dual field at posterior position. when the second day, treat one dual field at posterior position and two dual field at anterior position. Therefore, six dual field is finished in perfect periodic two days. we made cylindrical acrylic phantom, and I inserted a dosimeter film between phantom. in order to measure a dose distribution calculation before treat a patient, and a patient checked it in six field directions that got from a treatment. It is after that thermoluminescent dosimetry (TLD) as it uses Rando phantom and then measurement dose distribution in six field directions after attaching at chest, the right and left flank, a back after irradiation.

  • PDF

Comparison of Air Kerma­based and Absorbed Dose to Water­based Protocols in the Dosimetry of High Energy Electron Beams (고 에너지 전자선에 대한 공기커마와 물 흡수선량에 기반한 프로토콜간의 비교)

  • 박창현;신동오;박성용
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.249-258
    • /
    • 2003
  • A few years ago, a proposal was made to change the dosimetry from the air kerma-based reference dosimetry to the absorbed dose-based reference dosimetry for all radiotherapy beams of ionizing radiation to improve the accuracy of dosimetry. Here, we present a dosimetry study in which the two most widespread absorbed dose­based protocols (IAEA TRS­398 and AAPM TG­51) were compared with an air kerma­based protocol (IAEA TRS-277) by measuring the absorbed dose in the same reference depth. Measurements were performed in three clinical electron beam energies using a PTW 30002 cylindrical chamber, and Markus and Roos plane­parallel chambers. $^{60}$ Co calibration factors were obtained from the KFDA. The absorbed dose differences between the air kerma­based and absorbed dose­based protocols were within 2.0% for all chambers in all beams. The results thus show that the obtained absolute dose values will be not significantly altered by changing from the air kerma­based dosimetry to the absorbed dose­based dosimetry. It was also shown that absorbed dose values between the absorbed dose­based protocols agreed by deviations of less than 0.5% for a cylindrical chamber and less than 0.7% for plane­parallel chambers using cross­calibration factors. Although the use of a cylindrical chamber and plane­parallel chambers resulted in a difference of less than 2% for all situations investigated here, to reduce errors, the plane­parallel chambers are recommended for electron energies in which the use of cylindrical chamber is not permitted in each protocol.

  • PDF

Quality Assurance Program of Electron Beams Using Thermoluminescence Dosimetry (열형광선량계를 이용한 전자선 품질보증 프로그램에 관한 연구)

  • Rah Jeong-Eun;Kim Gwe-Ya;Jeong Hee-Kyo;Shin Dong-Oh;Suh Tae-Suk
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.62-69
    • /
    • 2005
  • The purpose of this study has been performed to investigate the possibility of external audit program using thermoluminescence dosimetry for electron beam in korea. The TLD system consists of LiF powder, type TLD-700 read with a PCL 3 reader. In order to determine a calibration coefficient of the TLD system, the reference dosimeters are irradiated to 2 Gy in a $^{60}CO$ beam at the KFDA The irradiation is performed under reference conditions is water phantom using the IAEA standard holder for TLD of electron beam. The energy correction factor is determined for LiF powder irradiated of dose to water 2 Gy in electron beams of 6, 9, 12, 16 and 20 MeV (Varian CL 2100C). The dose is determined according to the IAEA TRS-398 and by measurement with a PTW Roos type plane-parallel chamber. The TLD for each electron energy are positioned in water at reference depth. In this study, to verify of the accuracy of dose determination by the TLD system are performed through a 'blind' TLD irradiation. The results of blind test are $2.98\%,\;3.39\%\;and\;0.01\%(1\sigma)$ at 9, 16, 20 MeV, respectively. The value generally agrees within the acceptance level of $5\%$ for electron beam. The results of this study prove the possibility of the TLD quality assurance program for electron beams. It has contributed to the improvement of clinical electron dosimetry in radiotherapy centers.

  • PDF