• 제목/요약/키워드: Electron acceleration

검색결과 133건 처리시간 0.032초

GAMMA-RAY EMISSION FROM BLAZARS

  • TAKAHARA FUMIO
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.99-102
    • /
    • 1996
  • I discuss implications of gamma-ray emission from blazars based on electron acceleration by shock waves in a relativistic jet. The number spectrum of electrons turns out to be a broken power law; while at low energies the power law index has a universal value of 2, at high energies it steepens to an index of 3 because of strong radiative cooling. This spectrum can basically reproduce the observed spectral break between X-rays and gamma-rays. I show that energetics of relativistic jets can be well explained by this model. I estimate physical quantities of the relativistic jets by comparing the prediction with observations. The results show that the jets are particle dominated and are comprised of electron-positron pairs. A connection between gamma-ray emission and radiation drag is also discussed.

  • PDF

주사 전자 현미경에서 전자빔 프르브 생성 (Creation of Electron Beam Probe in Scanning Electron Microscopy)

  • 임선종;이찬홍
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.52-57
    • /
    • 2008
  • Most of the electrons emitted from the filament, are captured by the anode. The portion of the electron current that leaves the gun through the hole in the anode is called the beam current. Electron beam probe is called the focused beam on the specimen. Because of the lenes and aperture, the probe current becomes smaller than the beam current. It generate various signals(backscattered electron, secondary electron) in an interaction with the specimen atoms. Backscattered electron provide an useful signal for composition and local specimen surface inclination. Secondary electron is used far the formation of surface imagination. The steady electron beam probe is very important for the imagination formation and the brightness. In this paper, we show the results of developed elements that create electron beam probe and the measured beam probe in various acceleration voltages by Faraday cup. These data are used to analysis and improve the performance of the system in the development.

Optimal Conditions for Defect Analysis Using Electron Channeling Contrast Imaging

  • Oh, Jin-Su;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • 제46권3호
    • /
    • pp.164-166
    • /
    • 2016
  • Electron channeling contrast imaging (ECCI) is a powerful analyzing tool for identifying lattice defects like dislocations and twin boundaries. By using diffraction-based scanning electron microscopy technique, it enables microstructure analysis, which is comparable to that obtained by transmission electron microscopy that is mostly used in defect analysis. In this report, the optimal conditions for investigating crystal defects are suggested. We could obtain the best ECCI images when both acceleration voltage and probe current are high (30 kV and 20 nA). Also, shortening the working distance (6 mm) enhances the quality of defect imaging.

대면적 레이저 가공을 위한 가감속 파라미터가 가공오차에 미치는 영향 (Effects of Acceleration and Deceleration Parameters on the Machining Error for Large Area Laser Processing)

  • 이제훈;윤광호;김경한
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.721-728
    • /
    • 2014
  • In this paper, it is proposed a method of optimizing path parameters for large-area laser processing. On-the-fly system is necessary for large-area laser processing of uniform quality. It is developed a MOTF(Marking On-The-Fly) board for synchronizing the stage and scanner. And it is introduced the change of the error due to the change of parameters and algorithm for large-area laser processing. This algorithm automatically generates stage path and a velocity profile using acceleration and deceleration parameters. Since this method doesn't use a G-code, even if without expert knowledge, it has an advantage that can be accessed easily. Angle of one of the square of $350{\times}350mm$ was changed from $50^{\circ}$ to $80^{\circ}$ and analyzed the error corresponding to the value of Ta. It is calculated the value of Ta of the best with a precision of 20um through measurement of accuracy according to the Ta of each angle near the edge.

Prediction Model of the Outer Radiation Belt Developed by Chungbuk National University

  • Shin, Dae-Kyu;Lee, Dae-Young;Kim, Jin-Hee;Cho, Jung-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권4호
    • /
    • pp.303-309
    • /
    • 2014
  • The Earth's outer radiation belt often suffers from drastic changes in the electron fluxes. Since the electrons can be a potential threat to satellites, efforts have long been made to model and predict electron flux variations. In this paper, we describe a prediction model for the outer belt electrons that we have recently developed at Chungbuk National University. The model is based on a one-dimensional radial diffusion equation with observationally determined specifications of a few major ingredients in the following way. First, the boundary condition of the outer edge of the outer belt is specified by empirical functions that we determine using the THEMIS satellite observations of energetic electrons near the boundary. Second, the plasmapause locations are specified by empirical functions that we determine using the electron density data of THEMIS. Third, the model incorporates the local acceleration effect by chorus waves into the one-dimensional radial diffusion equation. We determine this chorus acceleration effect by first obtaining an empirical formula of chorus intensity as a function of drift shell parameter $L^*$, incorporating it as a source term in the one-dimensional diffusion equation, and lastly calibrating the term to best agree with observations of a certain interval. We present a comparison of the model run results with and without the chorus acceleration effect, demonstrating that the chorus effect has been incorporated into the model to a reasonable degree.

BLACK HOLE-IGM FEEDBACK, AND LINKS TO IGM FIELDS AND CR'S

  • KRONBER PHILIPP P.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.501-507
    • /
    • 2004
  • The uniquely large dimensions of Giant radio galaxies (GRGs) make it possible to probe for stringent limits on total energy content, Faraday rotation, Alfven speeds, particle transport and radiation loss times. All of these quantities are more stringently limited or specified for GRG's than in more 'normal' FRII radio sources. I discuss how both global and detailed analyses of GRG's lead to constraints on the CR electron acceleration mechanisms in GRG's and by extension in all FRII radio sources. The properties of GRG's appear to rule out large scale Fermi-type shock acceleration. The plasma parameters in these systems set up conditions that are favorable for magnetic reconnection, or some other very efficient process of conversion of magnetic to particle energy. We conclude that whatever mechanism operates in GRG's is probably the primary extragalactic CR acceleration mechanism in the Universe.

COSMIC RAY ACCELERATION DURING LARGE SCALE STRUCTURE FORMATION

  • BLASI PASQUALE
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.483-491
    • /
    • 2004
  • Clusters of galaxies are storage rooms of cosmic rays. They confine the hadronic component of cosmic rays over cosmological time scales due to diffusion, and the electron component due to energy losses. Hadronic cosmic rays can be accelerated during the process of structure formation, because of the supersonic motion of gas in the potential wells created by dark matter. At the shock waves that result from this motion, charged particles can be energized through the first order Fermi process. After discussing the most important evidences for non-thermal phenomena in large scale structures, we describe in some detail the main issues related to the acceleration of particles at these shock waves, emphasizing the possible role of the dynamical backreaction of the accelerated particles on the plasmas involved.

Shock Acceleration Model for Giant Radio Relics

  • Kang, Hyesung;Ryu, Dongsu;Jones, T.W.
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.36.4-37
    • /
    • 2017
  • Although most of observed properties of giant radio relics detected in the outskirts of galaxy clusters could be explained by relativistic electrons accelerated at merger-driven shocks, a few significant puzzles remain. In some relics the shock Mach number inferred from X-ray observations is smaller than that estimated from radio spectral index. Such a discrepancy could be understood, if either the shock Mach number is nder-estimated in X-ray observation due to projection effects, or if pre-existing electrons with a flat spectrum are re-accelerated by a weak shock, retaining the flat spectral form. In this study, we explore these two scenarios by comparing the results of shock acceleration simulations with observed features of the so-called Toothbrush relic in the merging cluster 1RXS J060303.3. We find that both models could reproduce reasonably well the observed radio flux and spectral index profiles and the integrated radio spectrum. Either way, the broad transverse relic profile requires additional post shock electron acceleration by downstream turbulence.

  • PDF

첨가재에 의한 저밀도 폴리에틸렌의 내트리잉성 향상 (Improvement of the resistance to Treeing by additive in Low Density Polyethylene)

  • 김봉협;임기조
    • 대한전기학회논문지
    • /
    • 제35권1호
    • /
    • pp.17-25
    • /
    • 1986
  • Discussions on this paper are related to the effects of organic materials to treeing phenomena of low density polyethylene. As additives, 11 kinds of organic compounds are selected by considering the respective features such as melting point, boiling point, electron affinity as well as molecular structure, and then the specimens of low density polyethylene are prepared by blending with 10wt% of the selected additives. For the comparison of effectiveness of treeing resistance and interpretation of the mechanism of compounds as treeing retardants, several investigations such as the tree acceleration test, the prestressed test and the measurement of internally occurred partial discharge are carried out. As the results, meta-Cresol is regard as the most effective retardant among those, and it is supposed that this aromatic compound to be comprised of radical having large electron affinity has strong capability to accept energetic electron to prevent or delay the growth of discharge streamer. Furthermore, by activating partial discharge at the wall of tree pit through the function of trapped electron at this material, the gas pressure in the pit is increased up to prevent the growth of streamer.

  • PDF

Electron Preacceleration at Weak Quasi- Perpendicular ICM Shocks: Effects of Shock Surface Rippling

  • Ha, Ji-Hoon;Kim, Sunjung;Ryu, Dongsu;Kang, Hyesung
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.55.2-55.2
    • /
    • 2020
  • Radio relics in the outskirts of galaxy clusters are interpreted as synchrotron radiation due to the relativistic electrons produced via diffusive shock acceleration (DSA) in shocks with low sonic Mach numbers, Ms ≤ 3 in high beta ICM plasma. Electron injection into the DSA process at such weak shocks is one of the key elements, which has yet to be fully understood. In this study, we explore the nature of kinetic microinstabilities excited in weak quasi-perpendicular shocks through 2D particle-in-cell simulations. We find Alfven-ion cyclotron (AIC), whistler, and mirror instabilities can be triggered by ion and electron temperature anisotropy in the immediate downstream of supercritical shocks with Ms > Mcrit ~ 2.3. In particular, AIC instability causes rippling of the shock surface, which in turn generates plasma waves on multi-scales and faciliates the electron preacceleration. Our results may contribute to understanding the origins of radio relics.

  • PDF