• Title/Summary/Keyword: Electron Probe Microanalysis (EPMA)

Search Result 53, Processing Time 0.029 seconds

Characterization of Individual Atmospheric Aerosols Using Quantitative Energy Dispersive-Electron Probe X-ray Microanalysis: A Review

  • Kim, Hye-Kyeong;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.115-140
    • /
    • 2010
  • Great concerns about atmospheric aerosols are attributed to their multiple roles to atmospheric processes. For example, atmospheric aerosols influence global climate, directly by scattering or absorbing solar radiations and indirectly by serving as cloud condensation nuclei. They also have a significant impact on human health and visibility. Many of these effects depend on the size and composition of atmospheric aerosols, and thus detailed information on the physicochemical properties and the distribution of airborne particles is critical to accurately predict their impact on the Earth's climate as well as human health. A single particle analysis technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) that can determine the concentration of low-Z elements such as carbon, nitrogen and oxygen in a microscopic volume has been developed. The capability of quantitative analysis of low-Z elements in individual particle allows the characterization of especially important atmospheric particles such as sulfates, nitrates, ammonium, and carbonaceous particles. Furthermore, the diversity and the complicated heterogeneity of atmospheric particles in chemical compositions can be investigated in detail. In this review, the development and methodology of low-Z particle EPMA for the analysis of atmospheric aerosols are introduced. Also, its typical applications for the characterization of various atmospheric particles, i.e., on the chemical compositions, morphologies, the size segregated distributions, and the origins of Asian dust, urban aerosols, indoor aerosols in underground subway station, and Arctic aerosols, are illustrated.

Ultrathin Window EPMA를 이용한 제주도 고산과 한라산 1100 고지에서의 입자상 물질 특성 분석

  • ;;;;R. Van Grieken
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.325-327
    • /
    • 2000
  • 본 연구에서는 한반도의 청정지역인 제주도 고산과 한라산 1100 고지에서의 입자상 물질을 분석하였다. 입자상 물질을 분석하는 방법 중에 EPMA(Electron Probe X-ray Microanalysis)를 이용한 단일 입자 분석법(Single Particle Analysis)은 개개 입자의 형상과 크기 그리고 화학 조성에 대한 정보를 동시에 제공하기 때문에 개개 입자의 생성, 이동, 반응성, 소멸 그리고 환경에의 영향에 대한 자세한 정보를 얻을 수 있다. (중략)

  • PDF

Ultrathin Window EPMA를 이용한 서울에서의 입자상 물질 분석

  • ;;;R. Van Grieken
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.335-336
    • /
    • 2000
  • 도시 대기는 복잡한 성분을 가진 입자상 물질로 이루어져 있는데, 검댕 입자나 비산재(fly ash)등과 같이 일차오염물질과 복잡한 대기 화학반응에 의해 생성되는 이차오염물질이 혼재하고 있기 때문이다. 도시 대기 중의 입자상 물질은 대부분 황산염, 질산염, 암모늄염 입자상 물질과 유기 입자들로 구성되어 있는데, 탄소 입자는 도시의 미세 입자 중 거의 반 정도를 차지한다. (Ro et. el., 2000) 본 연구에서는 서울 대기에서의 입자상 물질에 대한 분석을 EPMA(Electron Probe X-ray Microanalysis)를 이용한 단일 입자 분석법(Single Particle Analysis)을 가지고 행하였다. (중략)

  • PDF

Characterization of Aerosols Collected at a Subway Station Platform Using Low-Z Particle Electron Probe X-ray Microanalysis (Low-Z particle EPMA 단일입자 분석법을 이용한 지하철 승강장에서 미세입자 특성 분석)

  • Hwang HeeJin;Oh MiJung;Kang Sun-ei;Kim HyeKyeong;Ro Chul-Un
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.639-647
    • /
    • 2005
  • A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (EPMA), was applied to characterize samples collected at a subway station and ambient samples in Seoul. According to their chemical composition, many distinctive particle types were identified. For samples collected at the subway station platform, the major chemical species are carbon-rich, organic, aluminosilicates (AlSi), AlSi/C, AlSi/$CaCO_{3},\;CaCO_{3},\;SiO_{2},\;and\;Fe_{2}O_{3}$. For outdoor samples, carbon-rich, organic, AlSi, $CaCO_{3},\;SiO_{2},\;NaNO_{3},\;(Na,Mg)NO_{3},\;Na(CO_{3},NO_{3},SO_{4}),\;and\;(NH_{4})_2SO_4$, are abundantly encountered. Samples collected at the subway station show very high contents of $Fe_{2}O_{3}$, both in coarse and fine fractions, which come from brake block, subway train wheel, electric contact materials, etc. It is demonstrated that the single-particle characterization using this low-Z particle EPMA technique provided detailed information on various types of chemical species in indoor and outdoor samples.

Optimization of Analytical Condition for Reliable and Accurate Measurement of Carbon Concentration in Carburized Steel by EPMA (EPMA를 이용한 침탄강의 정확하고 신뢰성 있는 탄소농도 측정을 위한 분석조건 최적화)

  • Gi-Hoon Kwon;Hyunjun Park;Byoungho Choi;Young-Kook Lee;Kyoungil Moon
    • Korean Journal of Materials Research
    • /
    • v.33 no.3
    • /
    • pp.106-114
    • /
    • 2023
  • The carbon concentration in the carburized steels was measured by electron probe microanalysis (EPMA) for a range of soluted carbon content in austenite from 0.1 to 1.2 wt%. This study demonstrates the problems in carbon quantitative analysis using the existing calibration curve derived from pure iron (0.008 wt%C) and graphite (99.98 wt%C) as standard specimens. In order to derive an improved calibration curve, carbon homogenization treatment was performed to produce a uniform Kα intensity in selected standard samples (AISI 8620, AISI 4140, AISI 1065, AISI 52100 steel). The trend of detection intensity was identified according to the analysis condition, such as accelerating voltage (10, 15, 30 keV), and beam current (20, 50 nA). The appropriate analysis conditions (15 keV, 20 nA) were derived. When the carbon concentration depth profile of the carburized specimen was measured for a short carburizing time using the improved calibration curve, it proved to be a more reliable and accurate analysis method compared to the conventional analysis method.

Correction for Na Migration Effects in Silicate Glasses During Electron Microprobe Analysis (전자현미분석에서 발생하는 규산염 유리 시료의 Na 이동 효과 보정)

  • Hwayoung, Kim;Changkun, Park
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.457-467
    • /
    • 2022
  • Electron bombardment to silicate glass during electron probe microanalysis (EPMA) causes outward migration of Na from the excitation volume and subsequent decrease in the measured X-ray count rates of Na. To acquire precise Na2O content of silicate glass, one should use proper analytical technique to avoid or minimize Na migration effect or should correct for decreases in the measured Na X-ray counts. In this study, we analyzed 8 silicate glass standard samples using automated Time Dependent Intensity (TDI) correction method of Probe for EPMA software that can calculate zero-time intercept by extrapolating X-ray count changes over analysis time. We evaluated an accuracy of TDI correction for Na measurements of silicate glasses with EPMA at 15 kV acceleration voltage and 20 nA probe current electron beam, which is commonly utilized analytical condition for geological samples. Results show that Na loss can be avoided with 20 ㎛-sized large beam (<0.1 nA/㎛2), thus silicate glasses can be analyzed without TDI correction. When the beam size is smaller than 10 ㎛, Na loss results in large relative errors up to -55% of Na2O values without correction. By applying TDI corrections, we can acquire Na2O values close to the reference values with relative errors of ~ ±10%. Use of weighted linear-fit can reduce relative errors down to ±6%. Thus, quantitative analysis of silicate glasses with EPMA is required for TDI correction for alkali elements such as Na and K.

THE EFFECT OF GLASS IONOMER ON THE REMINERALIZATION OF ADJACENT INITIAL ENAMEL CARIES LESION BY RELEASING FLUORIDE (Glass Ionomer 수복재의 초기 법랑질 우식증에 대한 효과)

  • Park, Young-Soo;Kim, Jong-Soo;Kwon, Soon-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.529-538
    • /
    • 2002
  • There is no adverse opinion on the anticariogenic effect of fluoride, so glass ionomer restoration which release the fluoride is recommended fer child patient. To study the anticariogenic effect of initial carious lesion of fluoride released from adjacent glass ionomer restoration, the in situ model was constructed. A microhardness test, polarized scope investigation and electron probe microanalysis was done for analyzing the distribution of fluoride which was precipitated from glass ionomer restoration to the enamel caries lesion. Fuji IX, the conventional glass ionomer, was used for experimental group and Z-100, composite resin that fluoride was not contained, was used for control group. On the microhardness test, the remineralization was accelerated by fluoride. And on the polarized investigation, the size of caries lesion was reduced in the oral cavity and that phenomenon was accelerated by fluoride, too. Electron probe microanalysis shows that the remineralization was accelerated by fluoride and the fluoride concentration on subsurface area was increased. It maybe that the subsurface area was critical to anticariogenic effect. In summary of these result, initial caries lesion can be remineralized in the oral cavity and that phenomenon can be accelerated by fluoride. The subsurface area of caries lesion was a major part of defense to cariogenic invasion and to conserve the subsurface area, the surface of lesion body have to conserved.

  • PDF

Analysis of Heterogeneous $CaCO_{3}-CaSO_{4}$ Single Particle using Ultra-thin Window EPMA (Ultra-thin Window EPMA를 이용한 $CaCO_{3}-CaSO_{4}$ 혼성의 단일 입자 분석)

  • ;;R. Van Grieken
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.87-90
    • /
    • 2000
  • 대기 중에 존재하는 화합물의 반응을 연구하는 것은 대기 오염 화합물의 이동이나 소멸, 환경에의 영향을 파악하기 위하여 긴요하다. 특히 입자상 물질과 기체상 화합물과의 반응을 명확히 이해하는 것은 대기 오염물질의 거동을 파악하는데 매우 중요하다. 입자상 물질을 분석하는 방법 중에 EPMA(Electron Probe X-ray Microanalysis)를 이용한 단일 입자 분석법(Single Particle Analysis)은 개개 입자의 형상과 크기 그리고 화학 조성에 대한 정보를 동시에 제공하기 때문에 개개 입자의 생성, 이동, 반응성, 소멸 그리고 환경에의 영향에 대한 자세한 정보를 얻을 수 있다. (중략)

  • PDF

A way Analyzing Oxide Layer on an Irradiated CANDU-PHWR Pressure Tube Using an EPMA and X-ray Image Mapping

  • Jung, Yang Hong;Kim, Hee Moon
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.118-128
    • /
    • 2021
  • The oxide layer in samples taken from an irradiated Zr-2.5Nb pressure tube from a CANDU-PHWR reactor was analyzed using electron probe microanalysis (EPMA). The examined tube had been exposed to temperatures ranging from 264 to 306 ℃ and a neutron fluence of 8.9 × 1021 n/cm2 (E > 1 MeV) for the maximum 10 effective full-power years in a nuclear power plant. Measuring oxide layer thickness generally employs optical microscopy. However, in this study, analysis of the oxide layer from the irradiated pressure tube components was undertaken through X-ray image mapping obtained using EPMA. The oxide layer characteristics were analyzed by X-ray image mapping with 256 × 256 pixels using EPMA. In addition, the slope of the oxide layer was measured for each location. A particular advantage of this study was that backscattered electrons and X-ray image mapping were obtained at a magnification of 9,000 when 20 kV volts and 30 uA of current were applied to radiation-shielded EPMA. The results of this study should usefully contribute to the study of the oxide layer properties of various types of metallic materials irradiated by high radiation in nuclear power plants.