• Title/Summary/Keyword: Electron Probe

Search Result 731, Processing Time 0.026 seconds

Development of simple and continuous microwave source using a microwave oven (전자오븐을 이용한 간편하고 연속적인 마이크로파 발생 장치 개발)

  • 권기청;김재현;김정희;이효석;전상진;허승회;최원호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.290-295
    • /
    • 2000
  • In order to utilize as a pre-ionization means for reproducible ohmic plasma on KAIST-TOKAMAK, a simple, safe, economical and continuous microwave source has been developed using a home kitchen micro-wave oven. The magnetron used in the study can provide 500 W of power at 2.45 GHz. A conventional magnetron in a home kitchen microwave oven generates microwave for 8 ms at every 16 ms periodically due to the periodic (60 Hz) high voltage applied to the magnetron cathode. In order to generate continuous microwave which is suitable for tokamak pre-ionization, the magnetron operation circuit has been modified using a DC high voltage (5 kV, 1 A) power supply. It provides high-voltage with small ripple for magnetron cathode bias. Using the developed magnetron system, electron cyclotron resonace heated (ECH) plasmas were produced and the characteristics of the system were studied by diagnosing the ECH plasma using Langmuir probe and $H_{\alpha}$ emission diagnostics.

  • PDF

스퍼터링을 이용한 ITO 박막의 저온 증착

  • Jang, Seung-Hyeon;Lee, Yeong-Min;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.263-263
    • /
    • 2010
  • 투명도전막(indium tin oxide; ITO)은 투명하면서도 전기 전도도가 높기 때문에, 액정표시소자(LCD; Liquid Crystal Display), 전자발광소자(ELD; Electroluminescent Display) 및 전자 크로믹 소자(Electrochromic Display)를 포함하는 평판형 표시 소자(FPD; Flat Panel Display)와 태양전지 등에 이용되고 있다. 낮은 비저항과 높은 투과율의 ITO 박막은 $300^{\circ}C$ 이상의 고온에서 코팅해야 하는 것으로 알려져 있다. 그러나 최근 플라스틱과 같은 연성 소자가 전자부품에 널리 이용되면서 ITO를 저온에서 증착해야할 필요성이 대두되고 있다. 본 연구에서는 ITO를 플라스틱에 적용하기 위한 저온 코팅 공정 및 시편의 전 후처리공정을 개발하여 박막의 특성을 알아보고자 한다. 실험에 사용된 기판은 고투과율의 고분자(polyethylene terephthalate; PET) 필름이며 $5\;{\times}\;10\;cm^2$의 크기로 절단하여 알코올로 초음파 세척을 실시하였고, 진공 용기에 장입한 후 펄스전원을 이용하여 3분간 in-situ 청정을 실시하였다. ITO 코팅은 마그네트론 스퍼터링을 이용하였으며, 코팅시간, 전처리, 후처리, 기판온도, 산소유량 등 코팅 조건에 따른 박막의 특성을 조사하였다. ITO 박막의 코팅 조건에 따른 박막의 결정구조 분석은 x-선 회절(x-ray diffraction; XRD)을 이용하였고, 박막의 표면형상과 두께 보정 및 단면의 미세조직과 결정 성장 여부 등은 투과전자 현미경(transmission electron microscope; TEM)을 이용하여 분석하였다. 또한 ITO 박막의 면저항과 분광특성은 four-point Probe (CMP-100MP, Advanced Instrument Technology), spectrophotometer (UV-1601, SHIMADZU)를 이용하여 측정하였다. ITO 박막의 광학특성 분석 결과 전광선 투과율은 두께에 따라 변화 하였지만, 색차와 Haze 값은 증착 조건에 따라 큰 차이는 보이지 않았다. 그리고 박막의 결정화에 영향을 주는 가장 중요한 인자는 기판온도이지만, 기판온도를 높이지 못할 경우 비평형 마그네트론(unbalanced-magnetron; UBM)에 의해서 플라즈마 밀도를 높이는 방법으로 유사한 효과를 얻을 수 있음을 확인하였다.

  • PDF

Depositon of Transparent Conductive Films by a DC arc Plasmatron

  • Penkov, O.V.;Plaksin, V. Yu.;Joa, S.B.;Kim, J.H.;LEE, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.480-480
    • /
    • 2010
  • In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1,500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photo-electron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Sheet resistance of 4 Ohms cm was achieved after the deposition and 30 min annealing in the hydrogen at $350^{\circ}C$. Elevation of the substrate temperature during the deposition process up to $350^{\circ}C$ leads to decreasing of the film's resistance due to rearrangement of the crystalline structure.

  • PDF

Measurement of Grating Pitch Standards using Optical Diffractometry and Uncertainty Analysis (광 회절계를 이용한 격자 피치 표준 시편의 측정 및 불확도 해석)

  • Kim Jong-Ahn;Kim Jae-Wan;Park Byong-Chon;Kang Chu-Shik;Eom Tae-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.72-79
    • /
    • 2006
  • We measured grating pitch standards using optical diffractometry and analyzed measurement uncertainty. Grating pitch standards have been used widely as a magnification standard for a scanning electron microscope (SEM) and a scanning probe microscope (SPM). Thus, to establish the meter-traceability in nano-metrology using SPM and SEM, it is important to certify grating pitch standards accurately. The optical diffractometer consists of two laser sources, argon ion laser (488 nm) and He-Cd laser (325 nm), optics to make an incident beam, a precision rotary table and a quadrant photo-diode to detect the position of diffraction beam. The precision rotary table incorporates a calibrated angle encoder, enabling the precise and accurate measurement of diffraction angle. Applying the measured diffraction angle to the grating equation, the mean pitch of grating specimen can be obtained very accurately. The pitch and orthogonality of two-dimensional grating pitch standards were measured, and the measurement uncertainty was analyzed according to the Guide to the Expression of Uncertainty in Measurement. The expanded uncertainties (k = 2) in pitch measurement were less than 0.015 nm and 0.03 nm for the specimen with the nominal pitch of 300 nm and 1000 nm. In the case of orthogonality measurement, the expanded uncertainties were less than $0.006^{\circ}$. In the pitch measurement, the main uncertainty source was the variation of measured pitch values according to the diffraction order. The measurement results show that the optical diffractometry can be used as an effective calibration tool for grating pitch standards.

Naegleria fowleri Lysate Induces Strong Cytopathic Effects and Pro-inflammatory Cytokine Release in Rat Microglial Cells

  • Lee, Yang-Jin;Park, Chang-Eun;Kim, Jong-Hyun;Sohn, Hae-Jin;Lee, Jin-Young;Jung, Suk-Yul;Shin, Ho-Joon
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.3
    • /
    • pp.285-290
    • /
    • 2011
  • Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A $^{51}Cr$ release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-${\alpha}$, IL-6, and IL-$1{\beta}$, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response.

Gold-Silver mineals and the chemical environments of some gold-silver deposits, Republic of Korea(I) -Cheongju gold-silver mine- (한국(韓國) 일부(一部) 금(金)·은(銀) 광상(鑛床)에서 산출(産出)되는 금(金)·은(銀) 광물(鑛物)과 광상(鑛床)의 생성조건(生成條件)(I) -청주(淸州) 금(金)·은(銀) 광산(鑛山)-)

  • Lee, Hyun Koo;Choi, Jin Woo
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.287-307
    • /
    • 1988
  • The Cheongju gold-silver mine is located at approximately $36^{\circ}28^{\prime}$north latitude and $127^{\circ}31^{\prime}$ east longitude in the Cheongju City of the Chung cheong bug Do, South Korea. Gold-Silver bearing hydrothermal quartz veins, occur in Cheongju Granit of Jurassic age. K-Ar isotope data for sericite in quartz vein indicate that the Au-Ag mineralization took place in early Cretaceous ($97.5{\pm}2.18$ MA. Park, et ai, 1986). Three stage of mineralization recognized anre, from early to later, (I) Sulide stage: pyrite, arsenopyrite, pyrrhotite (Hpo), sphalerite, chalcopyrite, electrum and quartz (II) Electrum stage: pyrite, sphalerite, galena, chalcopyrite, electrum and quartz. (III) Silver mineral stage: pyrite, marcasite, pyrrhotite (Mpo), sphalerite, galena, electrum, native silver argentite, fluorite, calcite and quartz. In this paper, mode of occurrences and chemical compositions of electum and native silver have been investigated by means of microscope and EPMA. Electron probe microanalysis shows that an individual grain of electrum is almost homogeneous in composition. Silver content of electrum ranges from 44.7-67.1 atom.%. Gold content of native silver ranges below 0.2 atom. %. Vicker's hardness number (VHN) of electrum and native silver ranges $78.2-81.8kg/mm^{2}$ respectively. The filling temperature of fluid inclusions in quartz ranges from $130-280^{\circ}C$. On the basis of arsenpyrite geothemometer, the equilibrium temperature and sulfur fugacity of the pyrite-arsenopyrite-pyrrhotite(Hpo) assemblage is assumed to be in ange from $300-310^{\circ}C$ and $10^{-10}$ to $10^{-11}$ atm. The estimated ore reserviors on Cheongju mine area are calculated to 8000 T/M, averaing 8.6g/t Au, 27.8 g/t Ag, 1.25% Pb, l.65% Zn.

  • PDF

Application of Chemical Probes to Detect Superoxide Anion and Singlet Oxygen in Biological Systems during Gamma Irradiation

  • Lee, Min Hee;Cho, Eun Ju;Kim, Ji Hong;Kim, Ji Eun;Chung, Byung Yeoup;Cho, Jae-Young;Lee, Kang-Soo;Kim, Jin-Hong
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.221-225
    • /
    • 2011
  • To detect superoxide anion ($O_2{\cdot}^-$) or singlet oxygen ($^1O_2$) in biological systems during gamma irradiation, specific chemical probes, 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron) or 2,2,6,6-tetramethyl-piperidine (TEMP), were evaluated. Tiron or TEMP spin adducts was structurally stable in aqueous solution during gamma irradiation up to 500 or 1,000 Gy, respectively. The signal of Tiron semiquinone radical, a spin adduct of Tiron upon reaction with $O_2{\cdot}^-$, was slightly increased by gamma irradiation. This trend was dose-dependently manifested in $O_2$-saturated aqueous solution using nitro blue tetrazolium (NBT), a common probe for both hydrated electron ($e{^-}_{aq}$) and $O_2{\cdot}^-$. In contrast, a spin adduct of TEMP, was never inducible by gamma irradiation, while its signal was substantially enhanced by photosensitization of riboflavin. These results suggest that Tiron and NBT or TEMP could be utilized to detect $O_2{\cdot}^-$ or $^1O_2$ in biological systems during gamma irradiation, although $O_2{\cdot}^-$ or $^1O_2$ are not the main reactive oxygen species produced by water radiolysis.

Effect of Reductants and their Properties of Electric Resistivity on the Preparation of Ag coated Cu Powders by Chemical Reduction Method (화학환원법을 이용한 은 코팅 구리 분말 제조 시 환원제의 영향 및 전기비저항 특성)

  • Ahn, Jong-Gwan;Yoon, Chi-Ho;Kim, Dong-Jin;Cho, Sung-Wook;Park, Je-Shin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1097-1102
    • /
    • 2010
  • Silver coated copper powders were prepared by a chemical reduction method with controlling the deposition process variables such as the feeding rate of the silver ionic solution and concentration of the reductants at room temperature. The characteristics of the products were evaluated by scanning electron microscope (SEM), X-ray diffractometer (XRD), atomic absorption spectrophotometer (AA) and a 4 probe resistivity measurement system. The optimum condition of the preparation of Ag coated Cu powders was at 0.05 M of potassium sodium tartrate and 2 ml/min of the feeding rate of the silver ionic solution. Our method successfully produced dense, uniform, and well-dispersed Ag coated Cu powder of $2{\sim}2.5{\mu}m$ witha silver layer of 100~200 nm. Additionally, we found that thespecific resistivity of the 30 wt.% Ag coated Cu powder was similar to that of pure silver, so that the composite powder could be used as an alternative electromagnetic shielding material for silver.

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers

  • Ryu, Jae Gon;Jeong, Yeong Il;Kim, Yeong Hun;Kim, In Suk;Kim, Do Hun;Kim, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.467-475
    • /
    • 2001
  • A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.

Superhard SiC Thin Films with a Microstructure of Nanocolumnar Crystalline Grains and an Amorphous Intergranular Phase

  • Lim, Kwan-Won;Sim, Yong-Sub;Huh, Joo-Youl;Park, Jong-Keuk;Lee, Wook-Seong;Baik, Young-Joon
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.206-211
    • /
    • 2019
  • Silicon carbide (SiC) thin films become superhard when they have microstructures of nanocolumnar crystalline grains (NCCG) with an intergranular amorphous SiC matrix. We investigated the role of ion bombardment and deposition temperature in forming the NCCG in SiC thin films. A direct-current (DC) unbalanced magnetron sputtering method was used with pure Ar as sputtering gas to deposit the SiC thin films at fixed target power of 200 W and chamber pressure of 0.4 Pa. The Ar ion bombardment of the deposited films was conducted by applying a negative DC bias voltage 0-100 V to the substrate during deposition. The deposition temperature was varied between room temperature and $450^{\circ}C$. Above a critical bias voltage of -80 V, the NCCG formed, whereas, below it, the SiC films were amorphous. Additionally, a minimum thermal energy (corresponding to a deposition temperature of $450^{\circ}C$ in this study) was required for the NCCG formation. Transmission electron microscopy, Raman spectroscopy, and glancing angle X-ray diffraction analysis (GAXRD) were conducted to probe the samples' structural characteristics. Of those methods, Raman spectroscopy was a particularly efficient non-destructive tool to analyze the formation of the SiC NCCG in the film, whereas GAXRD was insufficiently sensitive.