• 제목/요약/키워드: Electron Monte Carlo

검색결과 234건 처리시간 0.021초

시뮬레이션에 의한 $CH_4$ 전자군 파라미터 (Electron swarm parameter in $CH_4$ by MCS-BE simulation)

  • 김상남;성낙진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.89-92
    • /
    • 2005
  • Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron transport characteristic in $CH_4$ has been analysed over the E/N range 0.1${\sim}$ 300(Td), at the 300($_{\circ}$ K) by the two term approximation Boltzmann equation method and Monte Carlo Simulation. The electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, $Lucas^{[18]}$ and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

  • PDF

Verification of Secondary Electron Generated by Head Screw in Gamma Knife Using Monte Carlo N-Particle Simulation

  • Kim, Heesoo;Lee, Jeong-Woo
    • 한국의학물리학회지:의학물리
    • /
    • 제31권2호
    • /
    • pp.29-34
    • /
    • 2020
  • Purpose: The interaction of various substances inserted into the human body and radiation can confirm the radiation enhancement effect. A Leksell frame inserted into the human body for gamma knife treatment will cause not only pain and inconvenience to the patient, but also additional exposure to the patient's normal tissues. In this study, we attempt to confirm the additional exposure caused by the interaction of the Leksell frame and thermoplastic mask, and 60Co used for gamma knife treatment. Methods: A 60Co energy of 1.17, 1.33 MeV is applied using Monte Carlo simulation, and fixation screws and thermoplastic mask are fabricated using aluminum and titanium alloy, and Carbon compounds. Results: Results show a dose enhancement of up to 396.27% higher compared with that without a Leksell frame and up to 391.25% in thermoplastic mask. Conclusions: Hence, appropriate treatment methods and materials must be used to reduce additional exposure to normal tissues.

CF4, CH4, Ar 혼합기체의 전리와 부착계수 (Ionization and Attachment Coefficients in CF4, CH4, Ar Mixtures Gas)

  • 김상남
    • 전기학회논문지P
    • /
    • 제61권1호
    • /
    • pp.13-17
    • /
    • 2012
  • Ionization and Attachment Coefficients in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures.

SiH4-Ar혼합기체의 전자분포함수 해석 (The analysis on the Energy Distribution Function for Electron in SiH4-Ar Gas Mixtures)

  • 김상남
    • 전기학회논문지P
    • /
    • 제53권2호
    • /
    • pp.65-69
    • /
    • 2004
  • This paper calculates and gives the analysis of electron swarm transport coefficients as described electric conductive characteristics of pure Ar, pure $SiH_4$, Ar-$SiH_4$ mixture gases($SiH_4$-0.5%, 2.5%, 5%) over the range of E/N = 0.01~300[Td], P = 0.1, 1, 5.0 [Torr] by Monte Carlo the backward prolongation method of the Boltzmann equation using computer simulation without using expensive equipment. The results have been obtained by using the electron collision cross sections by TOF, PT, SST sampling, compared with the experimental data determined by the other author. It also proved the reliability of the electron collision cross sections and shows the practical values of computer simulation. Electron swann parameters in argon were drastically changed by adding a small amount of mono-silane. The electron drift velocity in these mixtures showed unusual behaviour against E/N. It had negative slope in the medium range of E/N, yet the slope was not smooth but contained a small hump. The longitudinal diffusion coefficient also showed a corresponding feature in its dependence on E/N. A two-tenn approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

$SF_{6+}Ar$혼합기체의 전자수송특성 개선에 관한 연구 (A Study on the Improvement of the Electron Transport Properties in $SF_{6+}Ar$ Mixtures Gas)

  • 하성철;김상남;유회영;서상현;임상원;전병훈
    • 한국전기전자재료학회논문지
    • /
    • 제11권1호
    • /
    • pp.67-73
    • /
    • 1998
  • In this paper, the electron swarm parameters in the 0.5% and 0.2% SF\ulcorner+Ar mixtures are measured by time of flight method over the E/N(Td) range from 30 to 300(Td). The measurements have been carried out by the double shutter drift tube with variable drift distance from the cathod. A two-term approximation of the boltzmann equation analysis and Monte Carlo simulation have been also used to study electron transport coefficients. We have calculated W, $ND_L,\;ND_T,\;\alpha,\;\eta,\;\alpha-\eta$, and the limiting breakdown electric field to gas mixtures ratio in pure $SF_6$+Ar mixtures. The electron energy distribution function has been analysed in $SF_6$+Ar mixtures at E/N : 200(Td) for a case of the equilibrium region in the mean electron energy. The measured results and the calculated results have been compared each other.

  • PDF

Design study of the Vacuum system for RAON accelerator using MonteCarlo method

  • 김재홍;전동오
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.70.1-70.1
    • /
    • 2015
  • The facility for RAON superconducting heavy-ion accelerator at a beam power of up to 400 kW will be produced rare isotopes with two electron cyclotron resonance (ECR) ion sources. Highly charged ions generated by the ECR ion source will be injected to a superconducting LINAC to accelerate them up to 200 MeV/u. During the acceleration of the heavy ions, a good vacuum system is required to avoid beam loss due to interaction with residual gases. Therefore ultra-high vacuum (UHV) is required to (i) limit beam losses, (ii) keep the radiation induced within safe levels, and (iii) prevent contamination of superconducting cavities by residual gas. In this work, a RAON vacuum design for all the accelerator system will be presented along with Monte Carlo simulation of vacuum levels in order to validate the vacuum hardware configuration, which is needed to meet the baseline requirements.

  • PDF

시뮬레이션에 의한 CF4, CH4, Ar혼합기체(混合氣體)에서 전자(電子)에너지분포함수 (A Simulation of the Energy Distribution Function for Electron in CF4, CH4, Ar Gas Mixtures)

  • 김상남
    • 전기학회논문지P
    • /
    • 제52권1호
    • /
    • pp.9-13
    • /
    • 2003
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f(\varepsilon)$ has the symmetrical shape whose axis of symmetry is a most probably energy. The measured results and the calculated results have been compared each other.

저압 열전자 방전 플라즈마의 Monte Carlo 시뮬레이션 (Monte Carlo Simulation of Thermionic Low Pressure Discharge Plasma)

  • 고욱희
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1880-1885
    • /
    • 2012
  • Nonlinear dynamical behaviors in thermionic low pressure discharge are investigated using a particle-in-cell(PIC) simulation. An electrostatic PIC code is developed to model the plasma discharge system including the kinetic effects. The elastic collision, excitation collision, ionization collision, and electron-ion recombination collision are considered in this code. The generated electrons and ions are traced to analyze physical characteristics of the plasma. The simulation results show that the nonlinear oscillation structures are observed for cold plasma in the system and the similar structures are observed for warm plasma with a shift in values of the bifurcation parameter. The detailed oscillation process can be subdivided into three distinct mode; anode-glow, temperature-limited, and double-layer modes.

$SF_6$-Ar 혼합기체(混合氣體)의 전자(電子) 평균(平均)에너지 (Mean energy of electrons in $SF_6$-Ar Mixtures Gas)

  • 김상남;성낙진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.75-78
    • /
    • 2003
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range $30\sim300$[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method. The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values. The transport coefficients for electrons in (0.2[%])$SF_6$-Ar and (0.5[%]$SF_6$ - Ar mixtures were measured by time-of-flight method, and the electron energy distribution function and the parameters of the velocity and the diffusion were determined by the variation of the collision cross-sections with energy. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Monte Carlo Simulation of Phytosanitary Irradiation Treatment for Mangosteen Using MRI-based Geometry

  • Oh, Se-Yeol;Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • 제39권3호
    • /
    • pp.205-214
    • /
    • 2014
  • Purpose: Phytosanitary irradiation treatment can effectively control regulated pests while maintaining produce quality. The objective of this study was to establish the best irradiation treatment for mangosteen, a popular tropical fruit, using a Monte Carlo simulation. Methods: Magnetic resonance image (MRI) data were used to generate a 3-D geometry to simulate dose distributions in a mangosteen using a radiation transport code (MCNP5). Microsoft Excel with visual basic application (VBA) was used to divide the image data into seed, flesh, and rind. Radiation energies used for the simulation were 10 MeV (high-energy) and 1.35 MeV (low-energy) for the electron beam, 5 MeV for X-rays, and 1.25 MeV for gamma rays from Co-60. Results: At 5 MeV X-rays and 1.25 MeV gamma rays, all areas (seeds, flesh, and rind) were irradiated ranging from 0.3 ~ 0.7 kGy. The average doses decreased as the number of fruit increased. For a 10 MeV electron beam, the dose distribution was biased: the dose for the rind where the electrons entered was $0.45{\pm}0.03$ kGy and the other side was $0.24 {\pm}0.10$ kGy. Use of an electron kinetic energy absorber improved the dose distribution in mangosteens. For the 1.35 MeV electron beam, the dose was shown only in the rind on the irradiated side; no significant dose was found in the flesh or seeds. One rotation of the fruit while in front of the beam improved the dose distribution around the entire rind. Conclusion: These results are invaluable for determining the ideal irradiation conditions for phytosanitary irradiation treatment of tropical fruit.