• Title/Summary/Keyword: Electron Monte Carlo

Search Result 235, Processing Time 0.028 seconds

Impact Ionization Rates of Electron in GaAs/AlGaAs Qunantum Well Using EMC Simulation (EMC Simulation을 이용한 GaAs/AlGaAs 양자 우물 내 전자의 충돌 이온화율)

  • 윤기정;홍창희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.221-225
    • /
    • 1994
  • We described the impact ionization rates of electron in GaAs/AlGaAs MQH(multi- quantum well) using EMC(ensenble Monte Carlo) simulation. Hot electron energy of injected into quantum well is increasing nearly liearly due to the applied electric field to the barrier of MQM inspite of various Al mole fraction in AlGaAs or barrier width. Impact ionization rates are decreasing exponentially by increasing Al mole fraction, and they have peak vague due to the barrier width.

Development and Evaluation of a Thimble-Like Head Bolus Shield for Hemi-Body Electron Beam Irradiation Technique

  • Shin, Wook-Geun;Lee, Sung Young;Jin, Hyeongmin;Kim, Jeongho;Kang, Seonghee;Kim, Jung-in;Jung, Seongmoon
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.152-157
    • /
    • 2022
  • Background: The hemi-body electron beam irradiation (HBIe-) technique has been proposed for the treatment of mycosis fungoides. It spares healthy skin using an electron shield. However, shielding electrons is complicated owing to electron scattering effects. In this study, we developed a thimble-like head bolus shield that surrounds the patient's entire head to prevent irradiation of the head during HBIe-. Materials and Methods: The feasibility of a thimble-like head bolus shield was evaluated using a simplified Geant4 Monte Carlo (MC) simulation. Subsequently, the head bolus was manufactured using a three-dimensional (3D) printed mold and Ecoflex 00-30 silicone. The fabricated head bolus was experimentally validated by measuring the dose to the Rando phantom using a metal-oxide-semiconductor field-effect transistor (MOSFET) detector with clinical configuration of HBIe-. Results and Discussion: The thimble-like head bolus reduced the electron fluence by 2% compared with that without a shield in the MC simulations. In addition, an improvement in fluence degradation outside the head shield was observed. In the experimental validation using the inhouse-developed bolus shield, this head bolus reduced the electron dose to approximately 2.5% of the prescribed dose. Conclusion: A thimble-like head bolus shield for the HBIe- technique was developed and validated in this study. This bolus effectively spares healthy skin without underdosage in the region of the target skin in HBIe-.

Monte Carlo Calculation of the Dose Profiles for a 6 MeV Electron Beam with Longitudinal Magnetic Fields (세로 자기장에서 6 MeV 전자선의 선량분포에 관한 몬데칼로 계산)

  • 오영기;정동혁;신교철;김기환;김정기;김진기;김부길;이정옥;문성록
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.195-201
    • /
    • 2002
  • Several investigators have presented the effects of external magnetic fields on the dose distributions for clinical electron and photon beams. We focus the low energy electron beam with more lateral scatter In this study we calculated the beam profiles for an clinical electron beam of 6 MeV with longitudinal magnetic fields of 0.5 T-3.0 T using a Monte Carlo code. The principle of dose enhancements in the penumbra region is to deflect the laterally scattered electrons from its initial direction by the skewness of the laterally scattered electrons along the direction of magnetic field lines due to Lorentz force under longitudinal magnetic field. To discuss the dose enhancement effect on the penumbra area from the calculated results, we introduced the simple term of penumbra reduction ratio (PRR), which is defined as the percentage difference between the penumbra with and without magnetic field at the same depth. We found that the average PRR are 33%, and 49% over the depths of 1.5 cm, 2.0 cm, and 2.4 cm for the magnetic fields of 2.0 T and 3.0 T respectively. For the case of 0.5 T and 1.0 T the effects of magnetic filed were not observed significantly. In order to obtain the dose enhancement effects by the external magnetic field, we think that its strength should be more than 2 T approximately. We expect that the PRR would be saturated to 50-60% with magnetic fields of 3 T-5 T As a result of these calculations we found that the penumbra widths can be reduced with increased magnetic fields. This Penumbra reduction is explained as a result of electron lateral spread outside the geometrical edges of the beam in a longitudinal magnetic field. This means that the electron therapy benefits from the external magnetic fields.

  • PDF

Benchmark Results of a Monte Carlo Treatment Planning system (몬데카를로 기반 치료계획시스템의 성능평가)

  • Cho, Byung-Chul
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.149-155
    • /
    • 2002
  • Recent advances in radiation transport algorithms, computer hardware performance, and parallel computing make the clinical use of Monte Carlo based dose calculations possible. To compare the speed and accuracies of dose calculations between different developed codes, a benchmark tests were proposed at the XIIth ICCR (International Conference on the use of Computers in Radiation Therapy, Heidelberg, Germany 2000). A Monte Carlo treatment planning comprised of 28 various Intel Pentium CPUs was implemented for routine clinical use. The purpose of this study was to evaluate the performance of our system using the above benchmark tests. The benchmark procedures are comprised of three parts. a) speed of photon beams dose calculation inside a given phantom of 30.5 cm$\times$39.5 cm $\times$ 30 cm deep and filled with 5 ㎣ voxels within 2% statistical uncertainty. b) speed of electron beams dose calculation inside the same phantom as that of the photon beams. c) accuracy of photon and electron beam calculation inside heterogeneous slab phantom compared with the reference results of EGS4/PRESTA calculation. As results of the speed benchmark tests, it took 5.5 minutes to achieve less than 2% statistical uncertainty for 18 MV photon beams. Though the net calculation for electron beams was an order of faster than the photon beam, the overall calculation time was similar to that of photon beam case due to the overhead time to maintain parallel processing. Since our Monte Carlo code is EGSnrc, which is an improved version of EGS4, the accuracy tests of our system showed, as expected, very good agreement with the reference data. In conclusion, our Monte Carlo treatment planning system shows clinically meaningful results. Though other more efficient codes are developed such like MCDOSE and VMC++, BEAMnrc based on EGSnrc code system may be used for routine clinical Monte Carlo treatment planning in conjunction with clustering technique.

  • PDF

The Temperature- and Field-dependent Impact ionization Coefficient for Silicon using Monte Carlo Simulation (Monte Carlo 시뮬레이션을 이용한 Si 임팩트이온화계수의 온도 및 전계 특성)

  • 유창관;고석웅;김재홍;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.451-454
    • /
    • 2000
  • The impact ionization(I.I.) is necessary to analyze carrier transport properties under the influence of high electric field. The full band I-k relation and Fermi's golden rule are used for the calculation of impact ionization rate. We have investigated the temperature- and field-dependent impact ionization coefficient for silicon using full band Monte Carlo simulation. The impact ionization coefficients calculated by our impact ionization model are agreed with experimental data at look. We know that impact ionization coefficients and electron energies are decreasing along increasing temperature due to increase of phonon scattering, especially by emission. The logarithm of impact ionization coefficients are fitted to linear function for temperature and field. The residuals of linear function are within the error bound of 5%. We know logarithmic impact ionization coefficients are linearly dependent on temperature and field.

  • PDF

Development of a Wide Dose-Rate Range Electron Beam Irradiation System for Pre-Clinical Studies and Multi-Purpose Applications Using a Research Linear Accelerator

  • Jang, Kyoung Won;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Lee, Sang Jin;Kim, Jung Kee;Moon, Young Min;Kim, Jin Young;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.31 no.2
    • /
    • pp.9-19
    • /
    • 2020
  • Purpose: This study aims to develop a multi-purpose electron beam irradiation device for preclinical research and material testing using the research electron linear accelerator installed at the Dongnam Institute of Radiological and Medical Sciences. Methods: The fabricated irradiation device comprises a dual scattering foil and collimator. The correct scattering foil thickness, in terms of the energy loss and beam profile uniformity, was determined using Monte Carlo calculations. The ion-chamber and radiochromic films were used to determine the reference dose-rate (Gy/s) and beam profiles as functions of the source to surface distance (SSD) and pulse frequency. Results: The dose-rates for the electron beams were evaluated for the range from 59.16 Gy/s to 5.22 cGy/s at SSDs of 40-120 cm, by controlling the pulse frequency. Furthermore, uniform dose distributions in the electron fields were achieved up to approximately 10 cm in diameter. An empirical formula for the systematic dose-rate calculation for the irradiation system was established using the measured data. Conclusions: A wide dose-rate range electron beam irradiation device was successfully developed in this study. The pre-clinical studies relating to FLASH radiotherapy to the conventional level were made available. Additionally, material studies were made available using a quantified irradiation system. Future studies are required to improve the energy, dose-rate, and field uniformity of the irradiation system.

Development of Electron-Beam Lithography Process Simulation Tool of the T-shaped Gate Formation for the Manufacturing and Development of the Millimeter-wave HEMT Devices (밀리미터파용 HEMT 소자 개발 및 제작을 위한 T-게이트 형성 전자빔 리소그래피 공정 모의 실험기 개발)

  • 손명식;김성찬;신동훈;이진구;황호정
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.23-36
    • /
    • 2004
  • A computationally efficient and accurate Monte Carlo (MC) simulator of electron beam lithography process has been developed for sub-0.l${\mu}{\textrm}{m}$ T-shaped gate formation in the HEMT devices for millimeter-wave frequencies. For the exposure process by electron to we newly and efficiently modeled the inner-shell electron scattering and its discrete energy loss with an incident electron for multi-layer resists and heterogeneous multi-layer targets in the MC simulation. In order to form the T-gate shape in resist layers, we usually use the different developer for each resist layer to obtain good reproducibility in the fabrication of HEMT devices. To model accurately the real fabrication process of electron beam lithography, we have applied the different developers in trilayer resist system By using this model we have simulated and analyzed 0.l${\mu}{\textrm}{m}$ T-gate fabrication process in the HEMT devices, and showed our simulation results with the SEM observations of the T-shaped gate process.

Study on Variation of Depth Dose Curves by the Strong Magnetic Fields : Monte Carlo Calculation for 10 MV X-rays (강자기장에 의한 깊이선량율(PDD) 변화에 관한 연구 : 10 MV 광자선에 대한 몬테칼로 계산)

  • 정동혁;김진기;김정기;신교철;김기환;김성규;김진영;오영기;지영훈
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.234-239
    • /
    • 2003
  • We examined the variation of percent depth dose (PDD) curves for 10 MV X-rays in the presence of magnetic fields. The EGS4 Monte Carlo code was applied and modified to take account of the effect of electron deflection under magnetic field was used. We defined and tested DI (dose improvement) and DR (dose reduction) to describe variation of PDD curves under various magnetic fields. For a magnetic field of 3 T applied at the depth region of 5-10 cm and field size of 10${\times}$10 $\textrm{cm}^2$, the DI is 1.56 (56% improvement) and DR is 0.68 (32% reduction). We explained the results from the Lorentz law and the concept of electron equilibrium. We suggested that the dose optimization in radiotherapy can be achieved from using the characteristics of dose distributions under magnetic fields.

  • PDF

An Introduction to Kinetic Monte Carlo Methods for Nano-scale Diffusion Process Modeling (나노 스케일 확산 공정 모사를 위한 동력학적 몬테칼로 소개)

  • Hwang, Chi-Ok;Seo, Ji-Hyun;Kwon, Oh-Seob;Kim, Ki-Dong;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.25-31
    • /
    • 2004
  • In this paper, we introduce kinetic Monte Carlo (kMC) methods for simulating diffusion process in nano-scale device fabrication. At first, we review kMC theory and backgrounds and give a simple point defect diffusion process modeling in thermal annealing after ion (electron) implantation into Si crystalline substrate to help understand kinetic Monte Carlo methods. kMC is a kind of Monte Carlo but can simulate time evolution of diffusion process through Poisson probabilistic process. In kMC diffusion process, instead of. solving differential reaction-diffusion equations via conventional finite difference or element methods, it is based on a series of chemical reaction (between atoms and/or defects) or diffusion events according to event rates of all possible events. Every event has its own event rate and time evolution of semiconductor diffusion process is directly simulated. Those event rates can be derived either directly from molecular dynamics (MD) or first-principles (ab-initio) calculations, or from experimental data.