Monte Carlo Calculation of the Dose Profiles for a 6 MeV Electron Beam with Longitudinal Magnetic Fields

세로 자기장에서 6 MeV 전자선의 선량분포에 관한 몬데칼로 계산

  • 오영기 (영남대학교 의료공학연구소) ;
  • 정동혁 (원광대학교병원 치료방사선과) ;
  • 신교철 (단국대학교병원 치료방사선과) ;
  • 김기환 (충남대학교병원 치료방사선과) ;
  • 김정기 (동아대학교병원 치료방사선과) ;
  • 김진기 (전북대학교병원 치료방사선과) ;
  • 김부길 (전북대학교 의과대학 의공학교실) ;
  • 이정옥 (원광보건대학 방사선과) ;
  • 문성록 (원광대학교병원 치료방사선과)
  • Published : 2002.12.01

Abstract

Several investigators have presented the effects of external magnetic fields on the dose distributions for clinical electron and photon beams. We focus the low energy electron beam with more lateral scatter In this study we calculated the beam profiles for an clinical electron beam of 6 MeV with longitudinal magnetic fields of 0.5 T-3.0 T using a Monte Carlo code. The principle of dose enhancements in the penumbra region is to deflect the laterally scattered electrons from its initial direction by the skewness of the laterally scattered electrons along the direction of magnetic field lines due to Lorentz force under longitudinal magnetic field. To discuss the dose enhancement effect on the penumbra area from the calculated results, we introduced the simple term of penumbra reduction ratio (PRR), which is defined as the percentage difference between the penumbra with and without magnetic field at the same depth. We found that the average PRR are 33%, and 49% over the depths of 1.5 cm, 2.0 cm, and 2.4 cm for the magnetic fields of 2.0 T and 3.0 T respectively. For the case of 0.5 T and 1.0 T the effects of magnetic filed were not observed significantly. In order to obtain the dose enhancement effects by the external magnetic field, we think that its strength should be more than 2 T approximately. We expect that the PRR would be saturated to 50-60% with magnetic fields of 3 T-5 T As a result of these calculations we found that the penumbra widths can be reduced with increased magnetic fields. This Penumbra reduction is explained as a result of electron lateral spread outside the geometrical edges of the beam in a longitudinal magnetic field. This means that the electron therapy benefits from the external magnetic fields.

측방 산란이 상대적으로 많은 6 MeV 전자선에 대하여 세로 자기장에서 반음영의 변화를 몬테칼로 계산을 이용하여 연구하였다. 전자의 물질과의 상호작용 계산에서 외부 자기장의 효과를 반열하기 위하여 자기장에서 전자의 방향변화에 관한 알고리즘을 개발하여 EGS4 시스템에 삽입하였다. 완성된 코드를 이용하여 점선원 기하구조를 설정하고 SSD 100 cm에서 직경 5 cm인 전자선에 대하여 0-3 T의 세로 자기장이 걸려있는 팬텀속 1.5 cm, 2.0 cm, 2.4 cm 깊이에서의 빔 프로파일을 계산하였다. 자기장의 세기에 따른 반음영의 감소를 나타내기 위해 같은 질이에서의 기존 반음영의 폭과 자기장에 의한 반음영 폭의 감소 비로 반음영 감소율(PRR)을 정의하였다. 계산결과 팬텀속 1.5 cm, 2.0 cm, 2.4 cm 깊이에 대하여 자기장의 세기가 2 T인 경우에 PRR은 각각 27%, 36%, 36%로 나타났으며, 3 T인 경우에는 각각 46%, 50%, 50%로 나타났다 0.5 T와 1 T에서는 자기장의 효과가 매우 미약하였다. 이 결과는 6 MeV 전자선의 경우에 2 T 이상의 자기장을 세로방향으로 인가한는 경우에 측방산란된 전자들이 자기장에 의하여 편향되면서 반음영의 폭이 크게 줄어드는 것으로 해석할 수 있다. 결론적으로 전자선치료에서 세로 자기장을 병행하는 경우에 조사면 가장자리의 선량감소가 보상됨으로써 치료효과의 증대를 기대할 수 있다.

Keywords