• Title/Summary/Keyword: Electron Collision Cross Sections Set

Search Result 55, Processing Time 0.029 seconds

Electron Collision Cross Sections for the TRIES Molecule and Electron Transport Coefficients in TRIES-Ar and TRIES-O2 Mixtures

  • Tuoi, Phan Thi;Tuan, Do Anh;Hien, Pham Xuan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1855-1862
    • /
    • 2018
  • A reliable set of low-energy electron collision cross sections for the triethoxysilane (TRIES) molecule was derived based on the measured electron transport coefficients for a pure TRIES molecule by using an electron swarm method and a two-term approximation of the Boltzmann equation. The electron transport coefficients calculated using the derived set are in good agreement with experimental value over a wide range of E/N values (ratio of the electric field E to the neutral number density N). The present electron collision cross section set for the TRIES molecule, therefore, is the most reliable so far for plasma discharges and for materials processing using the TRIES molecule. Moreover, the electron transport coefficients for the TRIES-Ar and the $TRIES-O_2$ mixtures were also calculated and analyzed over a wide range of E/N for the first time.

Determination of the Inelastic cross Sections for $C_{3}F_{8}$ Molecule by electron Swarm Study

  • Jeon, Byung-Hoon;Ha, Sung-Chul;Yang, Jeong-Mo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 2001
  • We measured the electron transport coefficients, the electron drift velocity, W, and the longitudinal diffusion coefficient, $D_{L}$, over the E/N range from 0.03 to 100 Td and gas pressure range from 0.133 to 122 kPa in the 0.526% and 5.05% $C_{3}F_{8}$-Ar mixtures by the double shutter drift tube with variable drift distance. And we calculated these electron transport coefficients by using multi-term approximation of Boltzmann equation analysis. We determined the electron collision cross sections set for $C_{3}F_{8}$ molecule by the comparison of measurement and calculation. Our special attention in the present study was focused upon the inelastic collision cross sections of the $C_{3}F_{8}$ molecule.

  • PDF

Determination of an Inelastic Collision Cross Sections for C3F8 Molecule by Electron Swarm Method (전자군 방법에 의한 C3F8분자가스의 비탄성충돌단면적의 결정)

  • Jeon Byung-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.301-306
    • /
    • 2006
  • The electron drift velocity W and the product of the longitudinal diffusion coefficient and the gas number density $ND_{L}$ in the $0.525\;\%$ and $5.05\;\%$ $C_{3}F_8-Ar$ mixtures were measured by using the double shutter drift tube with variable drift distance over the E/N range from 0.03 to 100 Td and gas pressure range from 1 to 915 torr. And we determined the electron collision cross sections set for the $C_{3}F_8$ molecule by STEP 1 of electron swarm method using a multi-term Boltzmann equation analysis. Our special attention in the present study was focused upon the vibrational excitation and new excitations cross sections of the $C_{3}F_8$ molecule.

Diffusion Coefficients for Electrons in SF6-Ar Gas Mixtures by MCS-BEq (MCSBEq에 의한 SF6-Ar혼합기체의 확산계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.125-129
    • /
    • 2015
  • Energy distribution function for electrons in SF6-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range 30~300[Td] by a two term Boltzmann equation and a Monte Carlo Simulation using a set of electron cross sections determined by other authors experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6-Ar$ mixtures were measured by time-of-flight(TOF) method, The results show that the deduced longitudinal diffusion coefficients and transverse diffusion coefficients agree reasonably well with theoretical for a rang of E/N values. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

The Analysis of the Electron Drift Velocity and Characteristics Energy in $SiH_4$ Plasma gas by Electron Swarm method (전자 Swarm법에 의한 $SiH_4$ 플라즈마의 전자이동속도 및 특성에너지 해석)

  • 이형윤;백승권;하성철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.88-93
    • /
    • 1999
  • This paper describes the electron transport characteristics in $SiH_4$ gas calculated for the range of E/n:0.5~300(Td) and Pressure:0.5, 1, 2.5(Torr) by the Monte carlo simulation and Boltzmann equation method using a set of electron collision cross sections determined by the reported results. The motion has been calculated to give swarm parameters for the electron drift velocity, longitudinal and transverse diffusion coefficients, the electron ionization coefficients, characteristics energy and the electron energy distribution function. The electron energy distributions function has been analysed in $SiH_4$ at E/N: 30, 50(Td)for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results of Monte carlo simulation and Boltzmann equation have been compared with experimental data by ohmori ad Pollock.

  • PDF

The analysis of electron transport coefficients in $CF_4$ molecular gas by multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식에 의한 $CF_4$ 분자가스의 전자수송계수 해석)

  • Jeon, Byung-Hoon;Park, Jae-June;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method. we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure $CF_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method. we confirmed erroneous calculated results of transport coefficients for $CF_{4}$ molecule treated in this paper having 'C2v symmetry' as $C_{3}H_{8}$ and $C_{3}F_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and $ND_L$) in pure $CF_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at lames-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.

  • PDF

The analysis of electron transport coefficients in CF$_4$ molecular gas by multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식에 의한 CF$_4$분자가스의 전자수송계수 해석)

  • 전병훈;박재준;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method, we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure CF$_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method, we confirmed erroneous calculated results of transport coefficients for CF$_4$ molecule treated in this paper having 'C2v symmetry'as C$_3$H$_{8}$ and C$_3$F$_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and ND$_{L}$) in pure CF$_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at James-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.e.

  • PDF

The analysis of electron energy distribution function using the approximated collision cross section in the low-pressure mercury discharge (저압 수은 방전에서의 근사화한 충돌 단면적을 사용한 전자 에너지 분포함수 해석)

  • 류명선;이진우;지철근
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1989.10a
    • /
    • pp.19-24
    • /
    • 1989
  • The electron energy distribution function in mercury discharge positive columns are calculated numerically from the Boltzmann eqation under a set of parameters, such as the electron temperature to. the atomic temperature Tw. the electron number density no. and the electric field E. Especially, using the approximation that collision cross sections only depend on the energy, the calculated electron energy distribution function was shown that it falls off rapidly in the high energy tail.

  • PDF

Mean energy of electrons in $SF_6$-Ar Mixtures Gas ($SF_6$-Ar 혼합기체(混合氣體)의 전자(電子) 평균(平均)에너지)

  • Kim, Sang-Nam;Seong, Nak-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.75-78
    • /
    • 2003
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range $30\sim300$[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method. The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values. The transport coefficients for electrons in (0.2[%])$SF_6$-Ar and (0.5[%]$SF_6$ - Ar mixtures were measured by time-of-flight method, and the electron energy distribution function and the parameters of the velocity and the diffusion were determined by the variation of the collision cross-sections with energy. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Analysis on the Mean energy of electrons in $SF_6-Ar$ Mixtures Gas used by MCS-BEq Algorithm ($SF_6-Ar$ 혼합기체(混合氣體)의 MCS-BEq알고리즘에 의한 전자(電子) 평균(平均)에너지 해석(解析))

  • Kim, Sang-Nam;Ha, Sung-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.281-284
    • /
    • 2004
  • Mean energy of electrons in $SF_6-Ar$ Mixtures Gas used by MCS-BEq algorithm has been analysed over the E/N range $30{\sim}300[Td]$ by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6-Ar$, 0.1[%] and 5.0[%], $SF_6-Ar$ mixtures were measured by time-of-flight(TOF) method. The transport Coefficients for electrons in (100[%])$SF_6$. (100[%])Ar, (0.2[%])$SF_6-Ar$ and (0.5[%]) $SF_6-Ar$, (5.0[%]) $SF_6-Ar$, (0.1[%])$SF_6-Ar$ mixtures were measured by time-of-flight method, and the electron energy distribution function and the parameters of the velocity and the diffusion were determined by the variation of the collision cross-sections with energy. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF