Browse > Article
http://dx.doi.org/10.3938/jkps.73.1855

Electron Collision Cross Sections for the TRIES Molecule and Electron Transport Coefficients in TRIES-Ar and TRIES-O2 Mixtures  

Tuoi, Phan Thi (Faculty of Electronics and Electrical Engineering, Hung Yen University of Technology and Education)
Tuan, Do Anh (Faculty of Electronics and Electrical Engineering, Hung Yen University of Technology and Education)
Hien, Pham Xuan (Department of Mechanical Engineering, University of Transport and Communications)
Abstract
A reliable set of low-energy electron collision cross sections for the triethoxysilane (TRIES) molecule was derived based on the measured electron transport coefficients for a pure TRIES molecule by using an electron swarm method and a two-term approximation of the Boltzmann equation. The electron transport coefficients calculated using the derived set are in good agreement with experimental value over a wide range of E/N values (ratio of the electric field E to the neutral number density N). The present electron collision cross section set for the TRIES molecule, therefore, is the most reliable so far for plasma discharges and for materials processing using the TRIES molecule. Moreover, the electron transport coefficients for the TRIES-Ar and the $TRIES-O_2$ mixtures were also calculated and analyzed over a wide range of E/N for the first time.
Keywords
Electron collision cross section; Triethoxysilane [$Hsi(OC_2H_5)_3$]; TRIES molecule; Electron swarm study; Electron transport coefficient; Boltzmann equation analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Yoshida, R. Sato, T. Yokota, Y. Kishimoto and H. Date, Jpn. J. Appl. Phys. 50, 120210 (2011).
2 K. Yoshida, S. Mori, Y. Kishimoto, H. Ohuchi, H. Hasegawa, M. Shimozuma and H. Tagashira, J. Phys. D: Appl. Phys. 38, 1918 (2005).   DOI
3 Y. Shin, Y. Akiyama, N. Imaishi and S. Jung, Eng. Sci. Rept., Kyushu University 25, 1 (2003).
4 S. Hattori, TREND 4, 19 (2001) [in Japanese].
5 Y. Kudoh, Y. Homma, N. Sakuma, T. Furusawa and K. Kusukawa, Jpn. J. Appl. Phys. 37, 1145 (1998).   DOI
6 R. Navamathavan, A. S. Jung, C. Y. Kim and C. K. Choi, J. Korean Phys. Soc. 53, 1468 (2008).   DOI
7 B. H. Jeon, J. Korean Phys. Soc. 43, 513 (2003).
8 J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).   DOI
9 A. E. D. Heylen, J. Phys. D: Appl. Phys. 1, 179 (1968).   DOI
10 D. A. Price and J. L. Moruzzi, J. Phys. D: Appl. Phys. 6, L17 (1973).   DOI
11 P. X. Hien, B. H. Jeon and D. A. Tuan, J. Phys. Soc. Jpn. 82, 034301-1-8 (2013).   DOI
12 M. Kurachi and Y. Nakamura, J. Physics. D: Appl. Phys. 22, 107 (1989).   DOI
13 W. L. Morgan, C. Winstead and V. McKoy, J. Appl. Phys. 92, 1663 (2002).   DOI
14 D. A. Tuan and B. H. Jeon, J. Phys. Soc. Jpn. 81, 064301-1-8 (2012).   DOI
15 H. Tagashira, Y. Sakai, and S. Sakamoto, J. Phys. D 10, 1051 (1977).   DOI
16 P. X. Hien, D. A. Tuan and B. H. Jeon, J. Korean Phys. Soc. 61, 62 (2012).   DOI
17 I. D. Reid, Aust. J. Phys. 32, 231 (1979).   DOI
18 I. D. Reid and S. R. Hunter, Aust. J. Phys. 32, 255 (1979).   DOI
19 M. Itoh, M. Kawaguchi, K. Satoh, Y. Miura and H. Tagashira, J. Phys. D: Appl. Phys. 23, 299 (1990).   DOI
20 K. Yoshida, S. Goto, H. Tagashira, C. Winstead, B. V. McKoy and W. L. Morgan, J. Phys. D: APPL. PHYS. 91, 2637 (2002).   DOI
21 K. Yoshida, R. Sato, T. Yokota, Y. Kishimoto and H. Date, Jpn. J. Appl. Phys. 50, 120210 (2011).
22 H. R. Skullerud, J. Phys. D: Appl. Phys. 1, 1567 (1968).   DOI
23 Y. Sakai, H. Tagashira and S. Sakamoto, J. Phys. D: Appl. Phys. 10, 1035 (1977).   DOI
24 Y. Nakamura and M. Kurachi, J. Phys. D: Appl. Phys. 21, 718 (1988).   DOI